Amorphous nickel cobalt oxides as highly efficient catalytic cathodes for rechargeable Li–O2 batteries

Although it is well acknowledged that regulating the adsorption behavior of oxygen-containing intermediates can prompt the reaction kinetics of lithium–oxygen batteries, its implementation still suffers from lacking a practical strategy. The amorphization strategy has great potential for custom-tuni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2022-10, Vol.121 (18)
Hauptverfasser: Lei, Xin, Li, Ruilong, Niu, Shuwen, Liu, Bo, Ahmadian Koudakan, Payam, Zhu, Zixuan, Fang, Yanyan, Zhou, Ya, Hong, Xun, Qian, Yitai, Wang, Gongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although it is well acknowledged that regulating the adsorption behavior of oxygen-containing intermediates can prompt the reaction kinetics of lithium–oxygen batteries, its implementation still suffers from lacking a practical strategy. The amorphization strategy has great potential for custom-tuning surface engineering due to the induced atomic disorder possessing unique electronic structures and abundant defect sites. In this work, amorphous NiCo2O4 nanosheets (a-NiCo2O4 NSs) are reported for high-performance lithium–oxygen batteries by modulating the electron density around metal sites. The Li–O2 batteries with a-NiCo2O4 NSs deliver an overpotential as low as 0.74 V with an ultralong lifetime of over 1000 h. Theoretical calculations reveal that the enhanced binding energy of the LiO2 intermediate is stemmed from d-band center upshifting, mediated by atomic disordering, which consequently yields low oxygen evolution-reaction and oxygen-reduction-reaction overpotentials. More importantly, the amorphization strategy can be utilized as a general approach toward other materials, such as cobalt oxide and nickel oxide.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0116857