Exciton optics, dynamics, and transport in atomically thin semiconductors

Atomically thin semiconductors such as transition metal dichalcogenide (TMD) monolayers exhibit a very strong Coulomb interaction, giving rise to a rich exciton landscape. This makes these materials highly attractive for efficient and tunable optoelectronic devices. In this Research Update, we revie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:APL materials 2022-10, Vol.10 (10)
Hauptverfasser: Perea-Causin, Raul, Erkensten, Daniel, Fitzgerald, Jamie M., Thompson, Joshua J. P., Rosati, Roberto, Brem, Samuel, Malic, Ermin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atomically thin semiconductors such as transition metal dichalcogenide (TMD) monolayers exhibit a very strong Coulomb interaction, giving rise to a rich exciton landscape. This makes these materials highly attractive for efficient and tunable optoelectronic devices. In this Research Update, we review the recent progress in the understanding of exciton optics, dynamics, and transport, which crucially govern the operation of TMD-based devices. We highlight the impact of hexagonal boron nitride-encapsulation, which reveals a plethora of many-particle states in optical spectra, and we outline the most novel breakthroughs in the field of exciton-polaritonics. Moreover, we underline the direct observation of exciton formation and thermalization in TMD monolayers and heterostructures in recent time-resolved, angle-resolved photoemission spectroscopy studies. We also show the impact of exciton density, strain, and dielectric environment on exciton diffusion and funneling. Finally, we put forward relevant research directions in the field of atomically thin semiconductors for the near future.
ISSN:2166-532X
2166-532X
DOI:10.1063/5.0107665