Application of the imaginary time hierarchical equations of motion method to calculate real time correlation functions

We investigate the application of the imaginary time hierarchical equations of motion method to calculate real time quantum correlation functions. By starting from the path integral expression for the correlated system–bath equilibrium state, we first derive a new set of equations that decouple the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2022-06, Vol.156 (24), p.244102-244102
Hauptverfasser: Xing, Tao, Li, Tianchu, Yan, Yaming, Bai, Shuming, Shi, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the application of the imaginary time hierarchical equations of motion method to calculate real time quantum correlation functions. By starting from the path integral expression for the correlated system–bath equilibrium state, we first derive a new set of equations that decouple the imaginary time propagation and the calculation of auxiliary density operators. The new equations, thus, greatly simplify the calculation of the equilibrium correlated initial state that is subsequently used in the real time propagation to obtain the quantum correlation functions. It is also shown that a periodic decomposition of the bath imaginary time correlation function is no longer necessary in the new equations such that different decomposition schemes can be explored. The applicability of the new method is demonstrated in several numerical examples, including the spin-Boson model, the Holstein model, and the double-well model for proton transfer reaction.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0095790