Sparse sliced inverse regression based on adaptive lasso penalty
In this article, a method of variable selection (V.S) in the concept of sufficient dimension reduction (SDR), called SSIR-AL, is proposed. The SSIR-AL combines the ideas of adaptive Lasso with sliced inverse regression (SIR) to get a sparse SIR estimator. On other hand, the SSIR-AL method enables ad...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, a method of variable selection (V.S) in the concept of sufficient dimension reduction (SDR), called SSIR-AL, is proposed. The SSIR-AL combines the ideas of adaptive Lasso with sliced inverse regression (SIR) to get a sparse SIR estimator. On other hand, the SSIR-AL method enables adaptive lasso to work with multi-dimensional and nonlinear regression without assuming any specific model. Through each of the simulation and analysis of real data was to prove the effectiveness of (SSIR-AL) |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0093717 |