Sparse sliced inverse regression based on adaptive lasso penalty

In this article, a method of variable selection (V.S) in the concept of sufficient dimension reduction (SDR), called SSIR-AL, is proposed. The SSIR-AL combines the ideas of adaptive Lasso with sliced inverse regression (SIR) to get a sparse SIR estimator. On other hand, the SSIR-AL method enables ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alaboudi, Dheyaa, Alkenani, Ali
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, a method of variable selection (V.S) in the concept of sufficient dimension reduction (SDR), called SSIR-AL, is proposed. The SSIR-AL combines the ideas of adaptive Lasso with sliced inverse regression (SIR) to get a sparse SIR estimator. On other hand, the SSIR-AL method enables adaptive lasso to work with multi-dimensional and nonlinear regression without assuming any specific model. Through each of the simulation and analysis of real data was to prove the effectiveness of (SSIR-AL)
ISSN:0094-243X
1551-7616
DOI:10.1063/5.0093717