Non-asymptotic quantum scattering theory to design high-mobility lateral transition-metal dichalcogenide heterostructures
Atomistic determination of carrier scattering properties is essential for designing nano-electronic devices in two-dimensional (2D) materials. Traditional quantum scattering theory is developed in an asymptotic limit, thus making it inapplicable for 2D materials and heterostructures. Here, we introd...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2022-05, Vol.131 (17) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 131 |
creator | Bharadwaj, Sathwik Ramasubramaniam, Ashwin Ram-Mohan, L. R. |
description | Atomistic determination of carrier scattering properties is essential for designing nano-electronic devices in two-dimensional (2D) materials. Traditional quantum scattering theory is developed in an asymptotic limit, thus making it inapplicable for 2D materials and heterostructures. Here, we introduce a new paradigm of non-asymptotic quantum scattering theory to obtain the carrier scattering properties at finite distances from active scattering centers. We develop an atomistic multiscale formalism built on the
k
⋅
p Hamiltonian, supplemented with parameters from first-principles electronic structure calculations. We apply this framework to investigate electron transport in lateral transition-metal dichalcogenide heterostructures and demonstrate enhanced high mobility of the order of
10
3
cm
2
V
−
1
s
−
1 at room temperature. The non-asymptotic quantum scattering formalism provides a new frontier to design high-performance mesoscopic devices in 2D materials. |
doi_str_mv | 10.1063/5.0089639 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0089639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660168453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ade77369ba676aa509e3b4960b1bfcb4002c44575c6ca690627626cfc988afc03</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4A0scQIpxU5iJz6iij-pgguco43jNK6SuLU3h7w9rtozpx2tPs3uDCH3nK04k9mzWDFWKpmpC7LgUSWFEOySLBhLeVKqQl2TmxB2jHFeZmpB5i83JhDmYY8OraaHCUacBho0IBpvxy3Fzjg_U3S0McFuR9rZbZcMrra9xZn2EDnoKXoYg0Ub_QaDcdFY3UGv3daMtjG0M5FzAf2kcfIm3JKrFvpg7s5zSX7fXn_WH8nm-_1z_bJJdKpSTKAxRZFJVYMsJIBgymR1riSred3qOo_BdJ6LQmipQSom00KmUrdalSW0mmVL8nDy3Xt3mEzAaucmP8aTVSol47LMRRapxxOl44_Bm7baezuAnyvOqmOzlajOzUb26cQGbRGOif-B_wBws3u8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660168453</pqid></control><display><type>article</type><title>Non-asymptotic quantum scattering theory to design high-mobility lateral transition-metal dichalcogenide heterostructures</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bharadwaj, Sathwik ; Ramasubramaniam, Ashwin ; Ram-Mohan, L. R.</creator><creatorcontrib>Bharadwaj, Sathwik ; Ramasubramaniam, Ashwin ; Ram-Mohan, L. R.</creatorcontrib><description>Atomistic determination of carrier scattering properties is essential for designing nano-electronic devices in two-dimensional (2D) materials. Traditional quantum scattering theory is developed in an asymptotic limit, thus making it inapplicable for 2D materials and heterostructures. Here, we introduce a new paradigm of non-asymptotic quantum scattering theory to obtain the carrier scattering properties at finite distances from active scattering centers. We develop an atomistic multiscale formalism built on the
k
⋅
p Hamiltonian, supplemented with parameters from first-principles electronic structure calculations. We apply this framework to investigate electron transport in lateral transition-metal dichalcogenide heterostructures and demonstrate enhanced high mobility of the order of
10
3
cm
2
V
−
1
s
−
1 at room temperature. The non-asymptotic quantum scattering formalism provides a new frontier to design high-performance mesoscopic devices in 2D materials.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0089639</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Asymptotic properties ; Chalcogenides ; Electron transport ; Electronic devices ; Electronic structure ; First principles ; Formalism ; Heterostructures ; Nanoelectronics ; Nanotechnology devices ; Room temperature ; Scattering ; Transition metal compounds ; Two dimensional materials</subject><ispartof>Journal of applied physics, 2022-05, Vol.131 (17)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ade77369ba676aa509e3b4960b1bfcb4002c44575c6ca690627626cfc988afc03</citedby><cites>FETCH-LOGICAL-c292t-ade77369ba676aa509e3b4960b1bfcb4002c44575c6ca690627626cfc988afc03</cites><orcidid>0000-0001-8013-6888 ; 0000-0001-6595-7442 ; 0000-0001-8476-4152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0089639$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Bharadwaj, Sathwik</creatorcontrib><creatorcontrib>Ramasubramaniam, Ashwin</creatorcontrib><creatorcontrib>Ram-Mohan, L. R.</creatorcontrib><title>Non-asymptotic quantum scattering theory to design high-mobility lateral transition-metal dichalcogenide heterostructures</title><title>Journal of applied physics</title><description>Atomistic determination of carrier scattering properties is essential for designing nano-electronic devices in two-dimensional (2D) materials. Traditional quantum scattering theory is developed in an asymptotic limit, thus making it inapplicable for 2D materials and heterostructures. Here, we introduce a new paradigm of non-asymptotic quantum scattering theory to obtain the carrier scattering properties at finite distances from active scattering centers. We develop an atomistic multiscale formalism built on the
k
⋅
p Hamiltonian, supplemented with parameters from first-principles electronic structure calculations. We apply this framework to investigate electron transport in lateral transition-metal dichalcogenide heterostructures and demonstrate enhanced high mobility of the order of
10
3
cm
2
V
−
1
s
−
1 at room temperature. The non-asymptotic quantum scattering formalism provides a new frontier to design high-performance mesoscopic devices in 2D materials.</description><subject>Applied physics</subject><subject>Asymptotic properties</subject><subject>Chalcogenides</subject><subject>Electron transport</subject><subject>Electronic devices</subject><subject>Electronic structure</subject><subject>First principles</subject><subject>Formalism</subject><subject>Heterostructures</subject><subject>Nanoelectronics</subject><subject>Nanotechnology devices</subject><subject>Room temperature</subject><subject>Scattering</subject><subject>Transition metal compounds</subject><subject>Two dimensional materials</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4A0scQIpxU5iJz6iij-pgguco43jNK6SuLU3h7w9rtozpx2tPs3uDCH3nK04k9mzWDFWKpmpC7LgUSWFEOySLBhLeVKqQl2TmxB2jHFeZmpB5i83JhDmYY8OraaHCUacBho0IBpvxy3Fzjg_U3S0McFuR9rZbZcMrra9xZn2EDnoKXoYg0Ub_QaDcdFY3UGv3daMtjG0M5FzAf2kcfIm3JKrFvpg7s5zSX7fXn_WH8nm-_1z_bJJdKpSTKAxRZFJVYMsJIBgymR1riSred3qOo_BdJ6LQmipQSom00KmUrdalSW0mmVL8nDy3Xt3mEzAaucmP8aTVSol47LMRRapxxOl44_Bm7baezuAnyvOqmOzlajOzUb26cQGbRGOif-B_wBws3u8</recordid><startdate>20220507</startdate><enddate>20220507</enddate><creator>Bharadwaj, Sathwik</creator><creator>Ramasubramaniam, Ashwin</creator><creator>Ram-Mohan, L. R.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8013-6888</orcidid><orcidid>https://orcid.org/0000-0001-6595-7442</orcidid><orcidid>https://orcid.org/0000-0001-8476-4152</orcidid></search><sort><creationdate>20220507</creationdate><title>Non-asymptotic quantum scattering theory to design high-mobility lateral transition-metal dichalcogenide heterostructures</title><author>Bharadwaj, Sathwik ; Ramasubramaniam, Ashwin ; Ram-Mohan, L. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ade77369ba676aa509e3b4960b1bfcb4002c44575c6ca690627626cfc988afc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Asymptotic properties</topic><topic>Chalcogenides</topic><topic>Electron transport</topic><topic>Electronic devices</topic><topic>Electronic structure</topic><topic>First principles</topic><topic>Formalism</topic><topic>Heterostructures</topic><topic>Nanoelectronics</topic><topic>Nanotechnology devices</topic><topic>Room temperature</topic><topic>Scattering</topic><topic>Transition metal compounds</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bharadwaj, Sathwik</creatorcontrib><creatorcontrib>Ramasubramaniam, Ashwin</creatorcontrib><creatorcontrib>Ram-Mohan, L. R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bharadwaj, Sathwik</au><au>Ramasubramaniam, Ashwin</au><au>Ram-Mohan, L. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-asymptotic quantum scattering theory to design high-mobility lateral transition-metal dichalcogenide heterostructures</atitle><jtitle>Journal of applied physics</jtitle><date>2022-05-07</date><risdate>2022</risdate><volume>131</volume><issue>17</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Atomistic determination of carrier scattering properties is essential for designing nano-electronic devices in two-dimensional (2D) materials. Traditional quantum scattering theory is developed in an asymptotic limit, thus making it inapplicable for 2D materials and heterostructures. Here, we introduce a new paradigm of non-asymptotic quantum scattering theory to obtain the carrier scattering properties at finite distances from active scattering centers. We develop an atomistic multiscale formalism built on the
k
⋅
p Hamiltonian, supplemented with parameters from first-principles electronic structure calculations. We apply this framework to investigate electron transport in lateral transition-metal dichalcogenide heterostructures and demonstrate enhanced high mobility of the order of
10
3
cm
2
V
−
1
s
−
1 at room temperature. The non-asymptotic quantum scattering formalism provides a new frontier to design high-performance mesoscopic devices in 2D materials.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0089639</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8013-6888</orcidid><orcidid>https://orcid.org/0000-0001-6595-7442</orcidid><orcidid>https://orcid.org/0000-0001-8476-4152</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2022-05, Vol.131 (17) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0089639 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Asymptotic properties Chalcogenides Electron transport Electronic devices Electronic structure First principles Formalism Heterostructures Nanoelectronics Nanotechnology devices Room temperature Scattering Transition metal compounds Two dimensional materials |
title | Non-asymptotic quantum scattering theory to design high-mobility lateral transition-metal dichalcogenide heterostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-asymptotic%20quantum%20scattering%20theory%20to%20design%20high-mobility%20lateral%20transition-metal%20dichalcogenide%20heterostructures&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Bharadwaj,%20Sathwik&rft.date=2022-05-07&rft.volume=131&rft.issue=17&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0089639&rft_dat=%3Cproquest_scita%3E2660168453%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660168453&rft_id=info:pmid/&rfr_iscdi=true |