Non-asymptotic quantum scattering theory to design high-mobility lateral transition-metal dichalcogenide heterostructures

Atomistic determination of carrier scattering properties is essential for designing nano-electronic devices in two-dimensional (2D) materials. Traditional quantum scattering theory is developed in an asymptotic limit, thus making it inapplicable for 2D materials and heterostructures. Here, we introd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-05, Vol.131 (17)
Hauptverfasser: Bharadwaj, Sathwik, Ramasubramaniam, Ashwin, Ram-Mohan, L. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page
container_title Journal of applied physics
container_volume 131
creator Bharadwaj, Sathwik
Ramasubramaniam, Ashwin
Ram-Mohan, L. R.
description Atomistic determination of carrier scattering properties is essential for designing nano-electronic devices in two-dimensional (2D) materials. Traditional quantum scattering theory is developed in an asymptotic limit, thus making it inapplicable for 2D materials and heterostructures. Here, we introduce a new paradigm of non-asymptotic quantum scattering theory to obtain the carrier scattering properties at finite distances from active scattering centers. We develop an atomistic multiscale formalism built on the k ⋅ p Hamiltonian, supplemented with parameters from first-principles electronic structure calculations. We apply this framework to investigate electron transport in lateral transition-metal dichalcogenide heterostructures and demonstrate enhanced high mobility of the order of 10 3 cm 2 V − 1 s − 1 at room temperature. The non-asymptotic quantum scattering formalism provides a new frontier to design high-performance mesoscopic devices in 2D materials.
doi_str_mv 10.1063/5.0089639
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0089639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660168453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ade77369ba676aa509e3b4960b1bfcb4002c44575c6ca690627626cfc988afc03</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4A0scQIpxU5iJz6iij-pgguco43jNK6SuLU3h7w9rtozpx2tPs3uDCH3nK04k9mzWDFWKpmpC7LgUSWFEOySLBhLeVKqQl2TmxB2jHFeZmpB5i83JhDmYY8OraaHCUacBho0IBpvxy3Fzjg_U3S0McFuR9rZbZcMrra9xZn2EDnoKXoYg0Ub_QaDcdFY3UGv3daMtjG0M5FzAf2kcfIm3JKrFvpg7s5zSX7fXn_WH8nm-_1z_bJJdKpSTKAxRZFJVYMsJIBgymR1riSred3qOo_BdJ6LQmipQSom00KmUrdalSW0mmVL8nDy3Xt3mEzAaucmP8aTVSol47LMRRapxxOl44_Bm7baezuAnyvOqmOzlajOzUb26cQGbRGOif-B_wBws3u8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660168453</pqid></control><display><type>article</type><title>Non-asymptotic quantum scattering theory to design high-mobility lateral transition-metal dichalcogenide heterostructures</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bharadwaj, Sathwik ; Ramasubramaniam, Ashwin ; Ram-Mohan, L. R.</creator><creatorcontrib>Bharadwaj, Sathwik ; Ramasubramaniam, Ashwin ; Ram-Mohan, L. R.</creatorcontrib><description>Atomistic determination of carrier scattering properties is essential for designing nano-electronic devices in two-dimensional (2D) materials. Traditional quantum scattering theory is developed in an asymptotic limit, thus making it inapplicable for 2D materials and heterostructures. Here, we introduce a new paradigm of non-asymptotic quantum scattering theory to obtain the carrier scattering properties at finite distances from active scattering centers. We develop an atomistic multiscale formalism built on the k ⋅ p Hamiltonian, supplemented with parameters from first-principles electronic structure calculations. We apply this framework to investigate electron transport in lateral transition-metal dichalcogenide heterostructures and demonstrate enhanced high mobility of the order of 10 3 cm 2 V − 1 s − 1 at room temperature. The non-asymptotic quantum scattering formalism provides a new frontier to design high-performance mesoscopic devices in 2D materials.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0089639</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Asymptotic properties ; Chalcogenides ; Electron transport ; Electronic devices ; Electronic structure ; First principles ; Formalism ; Heterostructures ; Nanoelectronics ; Nanotechnology devices ; Room temperature ; Scattering ; Transition metal compounds ; Two dimensional materials</subject><ispartof>Journal of applied physics, 2022-05, Vol.131 (17)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ade77369ba676aa509e3b4960b1bfcb4002c44575c6ca690627626cfc988afc03</citedby><cites>FETCH-LOGICAL-c292t-ade77369ba676aa509e3b4960b1bfcb4002c44575c6ca690627626cfc988afc03</cites><orcidid>0000-0001-8013-6888 ; 0000-0001-6595-7442 ; 0000-0001-8476-4152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0089639$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Bharadwaj, Sathwik</creatorcontrib><creatorcontrib>Ramasubramaniam, Ashwin</creatorcontrib><creatorcontrib>Ram-Mohan, L. R.</creatorcontrib><title>Non-asymptotic quantum scattering theory to design high-mobility lateral transition-metal dichalcogenide heterostructures</title><title>Journal of applied physics</title><description>Atomistic determination of carrier scattering properties is essential for designing nano-electronic devices in two-dimensional (2D) materials. Traditional quantum scattering theory is developed in an asymptotic limit, thus making it inapplicable for 2D materials and heterostructures. Here, we introduce a new paradigm of non-asymptotic quantum scattering theory to obtain the carrier scattering properties at finite distances from active scattering centers. We develop an atomistic multiscale formalism built on the k ⋅ p Hamiltonian, supplemented with parameters from first-principles electronic structure calculations. We apply this framework to investigate electron transport in lateral transition-metal dichalcogenide heterostructures and demonstrate enhanced high mobility of the order of 10 3 cm 2 V − 1 s − 1 at room temperature. The non-asymptotic quantum scattering formalism provides a new frontier to design high-performance mesoscopic devices in 2D materials.</description><subject>Applied physics</subject><subject>Asymptotic properties</subject><subject>Chalcogenides</subject><subject>Electron transport</subject><subject>Electronic devices</subject><subject>Electronic structure</subject><subject>First principles</subject><subject>Formalism</subject><subject>Heterostructures</subject><subject>Nanoelectronics</subject><subject>Nanotechnology devices</subject><subject>Room temperature</subject><subject>Scattering</subject><subject>Transition metal compounds</subject><subject>Two dimensional materials</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4A0scQIpxU5iJz6iij-pgguco43jNK6SuLU3h7w9rtozpx2tPs3uDCH3nK04k9mzWDFWKpmpC7LgUSWFEOySLBhLeVKqQl2TmxB2jHFeZmpB5i83JhDmYY8OraaHCUacBho0IBpvxy3Fzjg_U3S0McFuR9rZbZcMrra9xZn2EDnoKXoYg0Ub_QaDcdFY3UGv3daMtjG0M5FzAf2kcfIm3JKrFvpg7s5zSX7fXn_WH8nm-_1z_bJJdKpSTKAxRZFJVYMsJIBgymR1riSred3qOo_BdJ6LQmipQSom00KmUrdalSW0mmVL8nDy3Xt3mEzAaucmP8aTVSol47LMRRapxxOl44_Bm7baezuAnyvOqmOzlajOzUb26cQGbRGOif-B_wBws3u8</recordid><startdate>20220507</startdate><enddate>20220507</enddate><creator>Bharadwaj, Sathwik</creator><creator>Ramasubramaniam, Ashwin</creator><creator>Ram-Mohan, L. R.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8013-6888</orcidid><orcidid>https://orcid.org/0000-0001-6595-7442</orcidid><orcidid>https://orcid.org/0000-0001-8476-4152</orcidid></search><sort><creationdate>20220507</creationdate><title>Non-asymptotic quantum scattering theory to design high-mobility lateral transition-metal dichalcogenide heterostructures</title><author>Bharadwaj, Sathwik ; Ramasubramaniam, Ashwin ; Ram-Mohan, L. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ade77369ba676aa509e3b4960b1bfcb4002c44575c6ca690627626cfc988afc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Asymptotic properties</topic><topic>Chalcogenides</topic><topic>Electron transport</topic><topic>Electronic devices</topic><topic>Electronic structure</topic><topic>First principles</topic><topic>Formalism</topic><topic>Heterostructures</topic><topic>Nanoelectronics</topic><topic>Nanotechnology devices</topic><topic>Room temperature</topic><topic>Scattering</topic><topic>Transition metal compounds</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bharadwaj, Sathwik</creatorcontrib><creatorcontrib>Ramasubramaniam, Ashwin</creatorcontrib><creatorcontrib>Ram-Mohan, L. R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bharadwaj, Sathwik</au><au>Ramasubramaniam, Ashwin</au><au>Ram-Mohan, L. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-asymptotic quantum scattering theory to design high-mobility lateral transition-metal dichalcogenide heterostructures</atitle><jtitle>Journal of applied physics</jtitle><date>2022-05-07</date><risdate>2022</risdate><volume>131</volume><issue>17</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Atomistic determination of carrier scattering properties is essential for designing nano-electronic devices in two-dimensional (2D) materials. Traditional quantum scattering theory is developed in an asymptotic limit, thus making it inapplicable for 2D materials and heterostructures. Here, we introduce a new paradigm of non-asymptotic quantum scattering theory to obtain the carrier scattering properties at finite distances from active scattering centers. We develop an atomistic multiscale formalism built on the k ⋅ p Hamiltonian, supplemented with parameters from first-principles electronic structure calculations. We apply this framework to investigate electron transport in lateral transition-metal dichalcogenide heterostructures and demonstrate enhanced high mobility of the order of 10 3 cm 2 V − 1 s − 1 at room temperature. The non-asymptotic quantum scattering formalism provides a new frontier to design high-performance mesoscopic devices in 2D materials.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0089639</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8013-6888</orcidid><orcidid>https://orcid.org/0000-0001-6595-7442</orcidid><orcidid>https://orcid.org/0000-0001-8476-4152</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2022-05, Vol.131 (17)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_5_0089639
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Asymptotic properties
Chalcogenides
Electron transport
Electronic devices
Electronic structure
First principles
Formalism
Heterostructures
Nanoelectronics
Nanotechnology devices
Room temperature
Scattering
Transition metal compounds
Two dimensional materials
title Non-asymptotic quantum scattering theory to design high-mobility lateral transition-metal dichalcogenide heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-asymptotic%20quantum%20scattering%20theory%20to%20design%20high-mobility%20lateral%20transition-metal%20dichalcogenide%20heterostructures&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Bharadwaj,%20Sathwik&rft.date=2022-05-07&rft.volume=131&rft.issue=17&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0089639&rft_dat=%3Cproquest_scita%3E2660168453%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660168453&rft_id=info:pmid/&rfr_iscdi=true