Non-asymptotic quantum scattering theory to design high-mobility lateral transition-metal dichalcogenide heterostructures

Atomistic determination of carrier scattering properties is essential for designing nano-electronic devices in two-dimensional (2D) materials. Traditional quantum scattering theory is developed in an asymptotic limit, thus making it inapplicable for 2D materials and heterostructures. Here, we introd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-05, Vol.131 (17)
Hauptverfasser: Bharadwaj, Sathwik, Ramasubramaniam, Ashwin, Ram-Mohan, L. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atomistic determination of carrier scattering properties is essential for designing nano-electronic devices in two-dimensional (2D) materials. Traditional quantum scattering theory is developed in an asymptotic limit, thus making it inapplicable for 2D materials and heterostructures. Here, we introduce a new paradigm of non-asymptotic quantum scattering theory to obtain the carrier scattering properties at finite distances from active scattering centers. We develop an atomistic multiscale formalism built on the k ⋅ p Hamiltonian, supplemented with parameters from first-principles electronic structure calculations. We apply this framework to investigate electron transport in lateral transition-metal dichalcogenide heterostructures and demonstrate enhanced high mobility of the order of 10 3 cm 2 V − 1 s − 1 at room temperature. The non-asymptotic quantum scattering formalism provides a new frontier to design high-performance mesoscopic devices in 2D materials.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0089639