Non-asymptotic quantum scattering theory to design high-mobility lateral transition-metal dichalcogenide heterostructures
Atomistic determination of carrier scattering properties is essential for designing nano-electronic devices in two-dimensional (2D) materials. Traditional quantum scattering theory is developed in an asymptotic limit, thus making it inapplicable for 2D materials and heterostructures. Here, we introd...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2022-05, Vol.131 (17) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Atomistic determination of carrier scattering properties is essential for designing nano-electronic devices in two-dimensional (2D) materials. Traditional quantum scattering theory is developed in an asymptotic limit, thus making it inapplicable for 2D materials and heterostructures. Here, we introduce a new paradigm of non-asymptotic quantum scattering theory to obtain the carrier scattering properties at finite distances from active scattering centers. We develop an atomistic multiscale formalism built on the
k
⋅
p Hamiltonian, supplemented with parameters from first-principles electronic structure calculations. We apply this framework to investigate electron transport in lateral transition-metal dichalcogenide heterostructures and demonstrate enhanced high mobility of the order of
10
3
cm
2
V
−
1
s
−
1 at room temperature. The non-asymptotic quantum scattering formalism provides a new frontier to design high-performance mesoscopic devices in 2D materials. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0089639 |