Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides

Transition metal dichalcogenides (TMDs) are regarded as a possible material platform for quantum information science and related device applications. In TMD monolayers, the dephasing time and inhomogeneity are crucial parameters for any quantum information application. In TMD heterostructures, coupl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2022-06, Vol.156 (21), p.214704-214704
Hauptverfasser: Purz, Torben L., Martin, Eric W., Holtzmann, William G., Rivera, Pasqual, Alfrey, Adam, Bates, Kelsey M., Deng, Hui, Xu, Xiaodong, Cundiff, Steven T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transition metal dichalcogenides (TMDs) are regarded as a possible material platform for quantum information science and related device applications. In TMD monolayers, the dephasing time and inhomogeneity are crucial parameters for any quantum information application. In TMD heterostructures, coupling strength and interlayer exciton lifetimes are also parameters of interest. However, many demonstrations in TMDs can only be realized at specific spots on the sample, presenting a challenge to the scalability of these applications. Here, using multi-dimensional coherent imaging spectroscopy, we shed light on the underlying physics—including dephasing, inhomogeneity, and strain—for a MoSe2 monolayer and identify both promising and unfavorable areas for quantum information applications. We, furthermore, apply the same technique to a MoSe2/WSe2 heterostructure. Despite the notable presence of strain and dielectric environment changes, coherent and incoherent coupling and interlayer exciton lifetimes are mostly robust across the sample. This uniformity is despite a significantly inhomogeneous interlayer exciton photoluminescence distribution that suggests a bad sample for device applications. This robustness strengthens the case for TMDs as a next-generation material platform in quantum information science and beyond.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0087544