Examining fundamental and excitation gaps at the thermodynamic limit: A combined (QTP) DFT and coupled cluster study on trans-polyacetylene and polyacene

Interest in ab initio property prediction of π-conjugated polymers for technological applications places significant demand on “cost-effective” and conceptual computational methods, particularly effective, one-particle theories. This is particularly relevant in the case of Kohn–Sham Density Function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2022-05, Vol.156 (20), p.204308-204308
Hauptverfasser: Windom, Zachary W., Perera, Ajith, Bartlett, Rodney J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interest in ab initio property prediction of π-conjugated polymers for technological applications places significant demand on “cost-effective” and conceptual computational methods, particularly effective, one-particle theories. This is particularly relevant in the case of Kohn–Sham Density Functional Theory (KS-DFT) and its new competitors that arise from correlated orbital theory, the latter defining the QTP family of DFT functionals. This study presents large, ab initio equation of motion-coupled cluster calculations using the massively parallel ACESIII to target the fundamental bandgap of two prototypical organic polymers, trans-polyacetylene (tPA) and polyacene (Ac), and provides an assessment of the new quantum theory project (QTP) functionals for this problem. Further results focusing on the 1Ag (1Ag), 1Bu (1B2u), and 3Bu (3B2u) excited states of tPA (Ac) are also presented. By performing calculations on oligomers of increasing size, extrapolations to the thermodynamic limit for the fundamental and all excitation gaps, as well as estimations of the exciton binding energy, are made. Thermodynamic-limit results for a combination of “optimal” and model geometries are presented. Calculated results for excitations that are adequately described using a single-particle model illustrate the benefits of requiring a KS-DFT functional to satisfy the Bartlett ionization potential theorem.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0086158