Spectroscopically resolved photoacoustic microscopy using a broadband surface plasmon resonance sensor

Photoacoustic spectroscopic analysis allows for evaluating biological microscopic features, such as morphology and viscoelasticity, which offers the opportunities of comprehensively understanding the biological specimens. However, an ongoing challenge arises from inadequate response to the photoacou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2022-03, Vol.120 (12)
Hauptverfasser: Shan, Youxian, Dong, Yushu, Song, Wei, Yuan, Xiaocong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photoacoustic spectroscopic analysis allows for evaluating biological microscopic features, such as morphology and viscoelasticity, which offers the opportunities of comprehensively understanding the biological specimens. However, an ongoing challenge arises from inadequate response to the photoacoustic impulses owing to limited bandwidth of the piezoelectric transducer. Here, we develop spectroscopically resolved optical-resolution photoacoustic microscopy (OR-PAM) by incorporating a broadband surface plasmon resonance sensor (∼169.5-MHz bandwidth) as the ultrasonic detector. The photoacoustic spectra from polystyrene and polymethyl methacrylate microspheres represent the close dependence upon the density and sound speed in addition to the diameter. The photoacoustic structural images of the two types of microspheres with the same morphology manifest the nearly identical appearances, while the photoacoustic spectroscopic analysis permits them to be clearly distinguished because of the different densities and sound speeds. The results suggest that, by simultaneously revealing the anatomic structures and acoustic spectra, our spectroscopically resolved OR-PAM system is potentially valuable in characterizing the microscopic features of biological samples at a cellular level.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0085321