Analytical solutions to the 1D compressible isothermal Navier–Stokes equations with density-dependent viscosity

In this paper, we construct a class of analytical solutions to the one-dimensional compressible isothermal Navier–Stokes equations with density-dependent viscosity in the real line R. Precisely, we take the pressure p(ρ) = a1ρ and the viscosity coefficient μ(ρ) = a2ρ with a1, a2 > 0. We show that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2021-12, Vol.62 (12)
Hauptverfasser: Dong, Jianwei, Zhang, Litao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we construct a class of analytical solutions to the one-dimensional compressible isothermal Navier–Stokes equations with density-dependent viscosity in the real line R. Precisely, we take the pressure p(ρ) = a1ρ and the viscosity coefficient μ(ρ) = a2ρ with a1, a2 > 0. We show that the system has an exact solution with the initial data satisfying ρ0(x) = ex and u0(x) = x. The large-time asymptotic behavior of the density is exhibited according to various a1. The analytical solutions to the compressible isothermal Euler equations and the pressureless Euler equations are obtained as by-products.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0067503