Analytical solutions to the 1D compressible isothermal Navier–Stokes equations with density-dependent viscosity
In this paper, we construct a class of analytical solutions to the one-dimensional compressible isothermal Navier–Stokes equations with density-dependent viscosity in the real line R. Precisely, we take the pressure p(ρ) = a1ρ and the viscosity coefficient μ(ρ) = a2ρ with a1, a2 > 0. We show that...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2021-12, Vol.62 (12) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we construct a class of analytical solutions to the one-dimensional compressible isothermal Navier–Stokes equations with density-dependent viscosity in the real line R. Precisely, we take the pressure p(ρ) = a1ρ and the viscosity coefficient μ(ρ) = a2ρ with a1, a2 > 0. We show that the system has an exact solution with the initial data satisfying ρ0(x) = ex and u0(x) = x. The large-time asymptotic behavior of the density is exhibited according to various a1. The analytical solutions to the compressible isothermal Euler equations and the pressureless Euler equations are obtained as by-products. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/5.0067503 |