Strong magnon–photon coupling with chip-integrated YIG in the zero-temperature limit

The cross-integration of spin-wave and superconducting technologies is a promising method for creating novel hybrid devices for future information processing technologies to store, manipulate, or convert data in both classical and quantum regimes. Hybrid magnon–polariton systems have been widely stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-07, Vol.119 (3), Article 033502
Hauptverfasser: Baity, Paul G., Bozhko, Dmytro A., Macêdo, Rair, Smith, William, Holland, Rory C., Danilin, Sergey, Seferai, Valentino, Barbosa, João, Peroor, Renju R., Goldman, Sara, Nasti, Umberto, Paul, Jharna, Hadfield, Robert H., McVitie, Stephen, Weides, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Applied physics letters
container_volume 119
creator Baity, Paul G.
Bozhko, Dmytro A.
Macêdo, Rair
Smith, William
Holland, Rory C.
Danilin, Sergey
Seferai, Valentino
Barbosa, João
Peroor, Renju R.
Goldman, Sara
Nasti, Umberto
Paul, Jharna
Hadfield, Robert H.
McVitie, Stephen
Weides, Martin
description The cross-integration of spin-wave and superconducting technologies is a promising method for creating novel hybrid devices for future information processing technologies to store, manipulate, or convert data in both classical and quantum regimes. Hybrid magnon–polariton systems have been widely studied using bulk Yttrium Iron Garnet (Y3Fe5O12, YIG) and three-dimensional microwave photon cavities. However, limitations in YIG growth have, thus far, prevented its incorporation into CMOS compatible technologies, such as high-quality factor superconducting quantum technology. To overcome this impediment, we have used Plasma Focused Ion Beam (PFIB) technology—taking advantage of precision placement down to the micrometer scale—to integrate YIG with superconducting microwave devices. Ferromagnetic resonance has been measured at milliKelvin temperatures on PFIB-processed YIG samples using planar microwave circuits. Furthermore, we demonstrate strong coupling between superconducting resonators and YIG ferromagnetic resonance modes by maintaining reasonably low loss while reducing the system down to the micrometer scale. This achievement of strong coupling on-chip is a crucial step toward fabrication of functional hybrid quantum devices from spin-wave and superconducting components.
doi_str_mv 10.1063/5.0054837
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0054837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553113909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-e820b4c9d78606fa2ba2ae1ec6fc877d52ef90dfbb0db8724fadca2300e2bb0f3</originalsourceid><addsrcrecordid>eNqNkMtKBDEQRYMoOD4W_kGDK5XWStLPpQw-BgZc-ABXTTpdmYnMJG067aAr_8E_9EuMtOhKcZXKrXMrqUvIHoVjChk_SY8B0qTg-RoZUcjzmFNarJMRAPA4K1O6Sba67iFcU8b5iNxde2fNLFqKmbHm_fWtnVtvTSRt3y50aKy0n0dyrttYG48zJzw20f3kItIm8nOMXtDZ2OOyxdDqHUYLvdR-h2wosehw9-vcJrfnZzfjy3h6dTEZn05jyTPmYywY1Iksm7zIIFOC1YIJpCgzJYs8b1KGqoRG1TU0dZGzRIlGCsYBkAVN8W2yP8xtnX3ssfPVg-2dCU9WLE3D7ryEMlAHAyWd7TqHqmqdXgr3XFGoPmOr0uortsAeDewKa6s6qdFI_OZDblmeJAxYqOgnXfyfHmsvvLZmbHvjg_VwsAbXoP_5q1_hJ-t-wKptFP8AgMKeYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553113909</pqid></control><display><type>article</type><title>Strong magnon–photon coupling with chip-integrated YIG in the zero-temperature limit</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Baity, Paul G. ; Bozhko, Dmytro A. ; Macêdo, Rair ; Smith, William ; Holland, Rory C. ; Danilin, Sergey ; Seferai, Valentino ; Barbosa, João ; Peroor, Renju R. ; Goldman, Sara ; Nasti, Umberto ; Paul, Jharna ; Hadfield, Robert H. ; McVitie, Stephen ; Weides, Martin</creator><creatorcontrib>Baity, Paul G. ; Bozhko, Dmytro A. ; Macêdo, Rair ; Smith, William ; Holland, Rory C. ; Danilin, Sergey ; Seferai, Valentino ; Barbosa, João ; Peroor, Renju R. ; Goldman, Sara ; Nasti, Umberto ; Paul, Jharna ; Hadfield, Robert H. ; McVitie, Stephen ; Weides, Martin</creatorcontrib><description>The cross-integration of spin-wave and superconducting technologies is a promising method for creating novel hybrid devices for future information processing technologies to store, manipulate, or convert data in both classical and quantum regimes. Hybrid magnon–polariton systems have been widely studied using bulk Yttrium Iron Garnet (Y3Fe5O12, YIG) and three-dimensional microwave photon cavities. However, limitations in YIG growth have, thus far, prevented its incorporation into CMOS compatible technologies, such as high-quality factor superconducting quantum technology. To overcome this impediment, we have used Plasma Focused Ion Beam (PFIB) technology—taking advantage of precision placement down to the micrometer scale—to integrate YIG with superconducting microwave devices. Ferromagnetic resonance has been measured at milliKelvin temperatures on PFIB-processed YIG samples using planar microwave circuits. Furthermore, we demonstrate strong coupling between superconducting resonators and YIG ferromagnetic resonance modes by maintaining reasonably low loss while reducing the system down to the micrometer scale. This achievement of strong coupling on-chip is a crucial step toward fabrication of functional hybrid quantum devices from spin-wave and superconducting components.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0054837</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>MELVILLE: Amer Inst Physics</publisher><subject>Applied physics ; CMOS ; Coupling ; Data processing ; Ferromagnetic resonance ; Ferromagnetism ; Hybrid systems ; Ion beams ; Magnons ; Microwave circuits ; Photons ; Physical Sciences ; Physics ; Physics, Applied ; Polaritons ; Q factors ; Science &amp; Technology ; Superconductivity ; Yttrium ; Yttrium-iron garnet</subject><ispartof>Applied physics letters, 2021-07, Vol.119 (3), Article 033502</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>24</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000674420200017</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c362t-e820b4c9d78606fa2ba2ae1ec6fc877d52ef90dfbb0db8724fadca2300e2bb0f3</citedby><cites>FETCH-LOGICAL-c362t-e820b4c9d78606fa2ba2ae1ec6fc877d52ef90dfbb0db8724fadca2300e2bb0f3</cites><orcidid>0000-0001-9758-3115 ; 0000-0002-8084-4187 ; 0000-0002-3854-8237 ; 0000-0003-3358-798X ; 0000-0003-3885-2308 ; 0000-0002-1199-2346 ; 0000-0003-0215-4903 ; 0000-0003-4511-6413 ; 0000-0003-2473-3965 ; 0000-0002-7909-9220 ; 0000-0002-2718-6795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0054837$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,796,4514,27931,27932,39265,76392</link.rule.ids></links><search><creatorcontrib>Baity, Paul G.</creatorcontrib><creatorcontrib>Bozhko, Dmytro A.</creatorcontrib><creatorcontrib>Macêdo, Rair</creatorcontrib><creatorcontrib>Smith, William</creatorcontrib><creatorcontrib>Holland, Rory C.</creatorcontrib><creatorcontrib>Danilin, Sergey</creatorcontrib><creatorcontrib>Seferai, Valentino</creatorcontrib><creatorcontrib>Barbosa, João</creatorcontrib><creatorcontrib>Peroor, Renju R.</creatorcontrib><creatorcontrib>Goldman, Sara</creatorcontrib><creatorcontrib>Nasti, Umberto</creatorcontrib><creatorcontrib>Paul, Jharna</creatorcontrib><creatorcontrib>Hadfield, Robert H.</creatorcontrib><creatorcontrib>McVitie, Stephen</creatorcontrib><creatorcontrib>Weides, Martin</creatorcontrib><title>Strong magnon–photon coupling with chip-integrated YIG in the zero-temperature limit</title><title>Applied physics letters</title><addtitle>APPL PHYS LETT</addtitle><description>The cross-integration of spin-wave and superconducting technologies is a promising method for creating novel hybrid devices for future information processing technologies to store, manipulate, or convert data in both classical and quantum regimes. Hybrid magnon–polariton systems have been widely studied using bulk Yttrium Iron Garnet (Y3Fe5O12, YIG) and three-dimensional microwave photon cavities. However, limitations in YIG growth have, thus far, prevented its incorporation into CMOS compatible technologies, such as high-quality factor superconducting quantum technology. To overcome this impediment, we have used Plasma Focused Ion Beam (PFIB) technology—taking advantage of precision placement down to the micrometer scale—to integrate YIG with superconducting microwave devices. Ferromagnetic resonance has been measured at milliKelvin temperatures on PFIB-processed YIG samples using planar microwave circuits. Furthermore, we demonstrate strong coupling between superconducting resonators and YIG ferromagnetic resonance modes by maintaining reasonably low loss while reducing the system down to the micrometer scale. This achievement of strong coupling on-chip is a crucial step toward fabrication of functional hybrid quantum devices from spin-wave and superconducting components.</description><subject>Applied physics</subject><subject>CMOS</subject><subject>Coupling</subject><subject>Data processing</subject><subject>Ferromagnetic resonance</subject><subject>Ferromagnetism</subject><subject>Hybrid systems</subject><subject>Ion beams</subject><subject>Magnons</subject><subject>Microwave circuits</subject><subject>Photons</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Polaritons</subject><subject>Q factors</subject><subject>Science &amp; Technology</subject><subject>Superconductivity</subject><subject>Yttrium</subject><subject>Yttrium-iron garnet</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkMtKBDEQRYMoOD4W_kGDK5XWStLPpQw-BgZc-ABXTTpdmYnMJG067aAr_8E_9EuMtOhKcZXKrXMrqUvIHoVjChk_SY8B0qTg-RoZUcjzmFNarJMRAPA4K1O6Sba67iFcU8b5iNxde2fNLFqKmbHm_fWtnVtvTSRt3y50aKy0n0dyrttYG48zJzw20f3kItIm8nOMXtDZ2OOyxdDqHUYLvdR-h2wosehw9-vcJrfnZzfjy3h6dTEZn05jyTPmYywY1Iksm7zIIFOC1YIJpCgzJYs8b1KGqoRG1TU0dZGzRIlGCsYBkAVN8W2yP8xtnX3ssfPVg-2dCU9WLE3D7ryEMlAHAyWd7TqHqmqdXgr3XFGoPmOr0uortsAeDewKa6s6qdFI_OZDblmeJAxYqOgnXfyfHmsvvLZmbHvjg_VwsAbXoP_5q1_hJ-t-wKptFP8AgMKeYA</recordid><startdate>20210719</startdate><enddate>20210719</enddate><creator>Baity, Paul G.</creator><creator>Bozhko, Dmytro A.</creator><creator>Macêdo, Rair</creator><creator>Smith, William</creator><creator>Holland, Rory C.</creator><creator>Danilin, Sergey</creator><creator>Seferai, Valentino</creator><creator>Barbosa, João</creator><creator>Peroor, Renju R.</creator><creator>Goldman, Sara</creator><creator>Nasti, Umberto</creator><creator>Paul, Jharna</creator><creator>Hadfield, Robert H.</creator><creator>McVitie, Stephen</creator><creator>Weides, Martin</creator><general>Amer Inst Physics</general><general>American Institute of Physics</general><scope>AJDQP</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9758-3115</orcidid><orcidid>https://orcid.org/0000-0002-8084-4187</orcidid><orcidid>https://orcid.org/0000-0002-3854-8237</orcidid><orcidid>https://orcid.org/0000-0003-3358-798X</orcidid><orcidid>https://orcid.org/0000-0003-3885-2308</orcidid><orcidid>https://orcid.org/0000-0002-1199-2346</orcidid><orcidid>https://orcid.org/0000-0003-0215-4903</orcidid><orcidid>https://orcid.org/0000-0003-4511-6413</orcidid><orcidid>https://orcid.org/0000-0003-2473-3965</orcidid><orcidid>https://orcid.org/0000-0002-7909-9220</orcidid><orcidid>https://orcid.org/0000-0002-2718-6795</orcidid></search><sort><creationdate>20210719</creationdate><title>Strong magnon–photon coupling with chip-integrated YIG in the zero-temperature limit</title><author>Baity, Paul G. ; Bozhko, Dmytro A. ; Macêdo, Rair ; Smith, William ; Holland, Rory C. ; Danilin, Sergey ; Seferai, Valentino ; Barbosa, João ; Peroor, Renju R. ; Goldman, Sara ; Nasti, Umberto ; Paul, Jharna ; Hadfield, Robert H. ; McVitie, Stephen ; Weides, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-e820b4c9d78606fa2ba2ae1ec6fc877d52ef90dfbb0db8724fadca2300e2bb0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>CMOS</topic><topic>Coupling</topic><topic>Data processing</topic><topic>Ferromagnetic resonance</topic><topic>Ferromagnetism</topic><topic>Hybrid systems</topic><topic>Ion beams</topic><topic>Magnons</topic><topic>Microwave circuits</topic><topic>Photons</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Polaritons</topic><topic>Q factors</topic><topic>Science &amp; Technology</topic><topic>Superconductivity</topic><topic>Yttrium</topic><topic>Yttrium-iron garnet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baity, Paul G.</creatorcontrib><creatorcontrib>Bozhko, Dmytro A.</creatorcontrib><creatorcontrib>Macêdo, Rair</creatorcontrib><creatorcontrib>Smith, William</creatorcontrib><creatorcontrib>Holland, Rory C.</creatorcontrib><creatorcontrib>Danilin, Sergey</creatorcontrib><creatorcontrib>Seferai, Valentino</creatorcontrib><creatorcontrib>Barbosa, João</creatorcontrib><creatorcontrib>Peroor, Renju R.</creatorcontrib><creatorcontrib>Goldman, Sara</creatorcontrib><creatorcontrib>Nasti, Umberto</creatorcontrib><creatorcontrib>Paul, Jharna</creatorcontrib><creatorcontrib>Hadfield, Robert H.</creatorcontrib><creatorcontrib>McVitie, Stephen</creatorcontrib><creatorcontrib>Weides, Martin</creatorcontrib><collection>AIP Open Access Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baity, Paul G.</au><au>Bozhko, Dmytro A.</au><au>Macêdo, Rair</au><au>Smith, William</au><au>Holland, Rory C.</au><au>Danilin, Sergey</au><au>Seferai, Valentino</au><au>Barbosa, João</au><au>Peroor, Renju R.</au><au>Goldman, Sara</au><au>Nasti, Umberto</au><au>Paul, Jharna</au><au>Hadfield, Robert H.</au><au>McVitie, Stephen</au><au>Weides, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong magnon–photon coupling with chip-integrated YIG in the zero-temperature limit</atitle><jtitle>Applied physics letters</jtitle><stitle>APPL PHYS LETT</stitle><date>2021-07-19</date><risdate>2021</risdate><volume>119</volume><issue>3</issue><artnum>033502</artnum><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The cross-integration of spin-wave and superconducting technologies is a promising method for creating novel hybrid devices for future information processing technologies to store, manipulate, or convert data in both classical and quantum regimes. Hybrid magnon–polariton systems have been widely studied using bulk Yttrium Iron Garnet (Y3Fe5O12, YIG) and three-dimensional microwave photon cavities. However, limitations in YIG growth have, thus far, prevented its incorporation into CMOS compatible technologies, such as high-quality factor superconducting quantum technology. To overcome this impediment, we have used Plasma Focused Ion Beam (PFIB) technology—taking advantage of precision placement down to the micrometer scale—to integrate YIG with superconducting microwave devices. Ferromagnetic resonance has been measured at milliKelvin temperatures on PFIB-processed YIG samples using planar microwave circuits. Furthermore, we demonstrate strong coupling between superconducting resonators and YIG ferromagnetic resonance modes by maintaining reasonably low loss while reducing the system down to the micrometer scale. This achievement of strong coupling on-chip is a crucial step toward fabrication of functional hybrid quantum devices from spin-wave and superconducting components.</abstract><cop>MELVILLE</cop><pub>Amer Inst Physics</pub><doi>10.1063/5.0054837</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9758-3115</orcidid><orcidid>https://orcid.org/0000-0002-8084-4187</orcidid><orcidid>https://orcid.org/0000-0002-3854-8237</orcidid><orcidid>https://orcid.org/0000-0003-3358-798X</orcidid><orcidid>https://orcid.org/0000-0003-3885-2308</orcidid><orcidid>https://orcid.org/0000-0002-1199-2346</orcidid><orcidid>https://orcid.org/0000-0003-0215-4903</orcidid><orcidid>https://orcid.org/0000-0003-4511-6413</orcidid><orcidid>https://orcid.org/0000-0003-2473-3965</orcidid><orcidid>https://orcid.org/0000-0002-7909-9220</orcidid><orcidid>https://orcid.org/0000-0002-2718-6795</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-07, Vol.119 (3), Article 033502
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0054837
source AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Applied physics
CMOS
Coupling
Data processing
Ferromagnetic resonance
Ferromagnetism
Hybrid systems
Ion beams
Magnons
Microwave circuits
Photons
Physical Sciences
Physics
Physics, Applied
Polaritons
Q factors
Science & Technology
Superconductivity
Yttrium
Yttrium-iron garnet
title Strong magnon–photon coupling with chip-integrated YIG in the zero-temperature limit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T22%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20magnon%E2%80%93photon%20coupling%20with%20chip-integrated%20YIG%20in%20the%20zero-temperature%20limit&rft.jtitle=Applied%20physics%20letters&rft.au=Baity,%20Paul%20G.&rft.date=2021-07-19&rft.volume=119&rft.issue=3&rft.artnum=033502&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0054837&rft_dat=%3Cproquest_scita%3E2553113909%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553113909&rft_id=info:pmid/&rfr_iscdi=true