Strong magnon–photon coupling with chip-integrated YIG in the zero-temperature limit
The cross-integration of spin-wave and superconducting technologies is a promising method for creating novel hybrid devices for future information processing technologies to store, manipulate, or convert data in both classical and quantum regimes. Hybrid magnon–polariton systems have been widely stu...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-07, Vol.119 (3), Article 033502 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 119 |
creator | Baity, Paul G. Bozhko, Dmytro A. Macêdo, Rair Smith, William Holland, Rory C. Danilin, Sergey Seferai, Valentino Barbosa, João Peroor, Renju R. Goldman, Sara Nasti, Umberto Paul, Jharna Hadfield, Robert H. McVitie, Stephen Weides, Martin |
description | The cross-integration of spin-wave and superconducting technologies is a promising method for creating novel hybrid devices for future information processing technologies to store, manipulate, or convert data in both classical and quantum regimes. Hybrid magnon–polariton systems have been widely studied using bulk Yttrium Iron Garnet (Y3Fe5O12, YIG) and three-dimensional microwave photon cavities. However, limitations in YIG growth have, thus far, prevented its incorporation into CMOS compatible technologies, such as high-quality factor superconducting quantum technology. To overcome this impediment, we have used Plasma Focused Ion Beam (PFIB) technology—taking advantage of precision placement down to the micrometer scale—to integrate YIG with superconducting microwave devices. Ferromagnetic resonance has been measured at milliKelvin temperatures on PFIB-processed YIG samples using planar microwave circuits. Furthermore, we demonstrate strong coupling between superconducting resonators and YIG ferromagnetic resonance modes by maintaining reasonably low loss while reducing the system down to the micrometer scale. This achievement of strong coupling on-chip is a crucial step toward fabrication of functional hybrid quantum devices from spin-wave and superconducting components. |
doi_str_mv | 10.1063/5.0054837 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0054837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553113909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-e820b4c9d78606fa2ba2ae1ec6fc877d52ef90dfbb0db8724fadca2300e2bb0f3</originalsourceid><addsrcrecordid>eNqNkMtKBDEQRYMoOD4W_kGDK5XWStLPpQw-BgZc-ABXTTpdmYnMJG067aAr_8E_9EuMtOhKcZXKrXMrqUvIHoVjChk_SY8B0qTg-RoZUcjzmFNarJMRAPA4K1O6Sba67iFcU8b5iNxde2fNLFqKmbHm_fWtnVtvTSRt3y50aKy0n0dyrttYG48zJzw20f3kItIm8nOMXtDZ2OOyxdDqHUYLvdR-h2wosehw9-vcJrfnZzfjy3h6dTEZn05jyTPmYywY1Iksm7zIIFOC1YIJpCgzJYs8b1KGqoRG1TU0dZGzRIlGCsYBkAVN8W2yP8xtnX3ssfPVg-2dCU9WLE3D7ryEMlAHAyWd7TqHqmqdXgr3XFGoPmOr0uortsAeDewKa6s6qdFI_OZDblmeJAxYqOgnXfyfHmsvvLZmbHvjg_VwsAbXoP_5q1_hJ-t-wKptFP8AgMKeYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553113909</pqid></control><display><type>article</type><title>Strong magnon–photon coupling with chip-integrated YIG in the zero-temperature limit</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Baity, Paul G. ; Bozhko, Dmytro A. ; Macêdo, Rair ; Smith, William ; Holland, Rory C. ; Danilin, Sergey ; Seferai, Valentino ; Barbosa, João ; Peroor, Renju R. ; Goldman, Sara ; Nasti, Umberto ; Paul, Jharna ; Hadfield, Robert H. ; McVitie, Stephen ; Weides, Martin</creator><creatorcontrib>Baity, Paul G. ; Bozhko, Dmytro A. ; Macêdo, Rair ; Smith, William ; Holland, Rory C. ; Danilin, Sergey ; Seferai, Valentino ; Barbosa, João ; Peroor, Renju R. ; Goldman, Sara ; Nasti, Umberto ; Paul, Jharna ; Hadfield, Robert H. ; McVitie, Stephen ; Weides, Martin</creatorcontrib><description>The cross-integration of spin-wave and superconducting technologies is a promising method for creating novel hybrid devices for future information processing technologies to store, manipulate, or convert data in both classical and quantum regimes. Hybrid magnon–polariton systems have been widely studied using bulk Yttrium Iron Garnet (Y3Fe5O12, YIG) and three-dimensional microwave photon cavities. However, limitations in YIG growth have, thus far, prevented its incorporation into CMOS compatible technologies, such as high-quality factor superconducting quantum technology. To overcome this impediment, we have used Plasma Focused Ion Beam (PFIB) technology—taking advantage of precision placement down to the micrometer scale—to integrate YIG with superconducting microwave devices. Ferromagnetic resonance has been measured at milliKelvin temperatures on PFIB-processed YIG samples using planar microwave circuits. Furthermore, we demonstrate strong coupling between superconducting resonators and YIG ferromagnetic resonance modes by maintaining reasonably low loss while reducing the system down to the micrometer scale. This achievement of strong coupling on-chip is a crucial step toward fabrication of functional hybrid quantum devices from spin-wave and superconducting components.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0054837</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>MELVILLE: Amer Inst Physics</publisher><subject>Applied physics ; CMOS ; Coupling ; Data processing ; Ferromagnetic resonance ; Ferromagnetism ; Hybrid systems ; Ion beams ; Magnons ; Microwave circuits ; Photons ; Physical Sciences ; Physics ; Physics, Applied ; Polaritons ; Q factors ; Science & Technology ; Superconductivity ; Yttrium ; Yttrium-iron garnet</subject><ispartof>Applied physics letters, 2021-07, Vol.119 (3), Article 033502</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>24</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000674420200017</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c362t-e820b4c9d78606fa2ba2ae1ec6fc877d52ef90dfbb0db8724fadca2300e2bb0f3</citedby><cites>FETCH-LOGICAL-c362t-e820b4c9d78606fa2ba2ae1ec6fc877d52ef90dfbb0db8724fadca2300e2bb0f3</cites><orcidid>0000-0001-9758-3115 ; 0000-0002-8084-4187 ; 0000-0002-3854-8237 ; 0000-0003-3358-798X ; 0000-0003-3885-2308 ; 0000-0002-1199-2346 ; 0000-0003-0215-4903 ; 0000-0003-4511-6413 ; 0000-0003-2473-3965 ; 0000-0002-7909-9220 ; 0000-0002-2718-6795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0054837$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,796,4514,27931,27932,39265,76392</link.rule.ids></links><search><creatorcontrib>Baity, Paul G.</creatorcontrib><creatorcontrib>Bozhko, Dmytro A.</creatorcontrib><creatorcontrib>Macêdo, Rair</creatorcontrib><creatorcontrib>Smith, William</creatorcontrib><creatorcontrib>Holland, Rory C.</creatorcontrib><creatorcontrib>Danilin, Sergey</creatorcontrib><creatorcontrib>Seferai, Valentino</creatorcontrib><creatorcontrib>Barbosa, João</creatorcontrib><creatorcontrib>Peroor, Renju R.</creatorcontrib><creatorcontrib>Goldman, Sara</creatorcontrib><creatorcontrib>Nasti, Umberto</creatorcontrib><creatorcontrib>Paul, Jharna</creatorcontrib><creatorcontrib>Hadfield, Robert H.</creatorcontrib><creatorcontrib>McVitie, Stephen</creatorcontrib><creatorcontrib>Weides, Martin</creatorcontrib><title>Strong magnon–photon coupling with chip-integrated YIG in the zero-temperature limit</title><title>Applied physics letters</title><addtitle>APPL PHYS LETT</addtitle><description>The cross-integration of spin-wave and superconducting technologies is a promising method for creating novel hybrid devices for future information processing technologies to store, manipulate, or convert data in both classical and quantum regimes. Hybrid magnon–polariton systems have been widely studied using bulk Yttrium Iron Garnet (Y3Fe5O12, YIG) and three-dimensional microwave photon cavities. However, limitations in YIG growth have, thus far, prevented its incorporation into CMOS compatible technologies, such as high-quality factor superconducting quantum technology. To overcome this impediment, we have used Plasma Focused Ion Beam (PFIB) technology—taking advantage of precision placement down to the micrometer scale—to integrate YIG with superconducting microwave devices. Ferromagnetic resonance has been measured at milliKelvin temperatures on PFIB-processed YIG samples using planar microwave circuits. Furthermore, we demonstrate strong coupling between superconducting resonators and YIG ferromagnetic resonance modes by maintaining reasonably low loss while reducing the system down to the micrometer scale. This achievement of strong coupling on-chip is a crucial step toward fabrication of functional hybrid quantum devices from spin-wave and superconducting components.</description><subject>Applied physics</subject><subject>CMOS</subject><subject>Coupling</subject><subject>Data processing</subject><subject>Ferromagnetic resonance</subject><subject>Ferromagnetism</subject><subject>Hybrid systems</subject><subject>Ion beams</subject><subject>Magnons</subject><subject>Microwave circuits</subject><subject>Photons</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Polaritons</subject><subject>Q factors</subject><subject>Science & Technology</subject><subject>Superconductivity</subject><subject>Yttrium</subject><subject>Yttrium-iron garnet</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkMtKBDEQRYMoOD4W_kGDK5XWStLPpQw-BgZc-ABXTTpdmYnMJG067aAr_8E_9EuMtOhKcZXKrXMrqUvIHoVjChk_SY8B0qTg-RoZUcjzmFNarJMRAPA4K1O6Sba67iFcU8b5iNxde2fNLFqKmbHm_fWtnVtvTSRt3y50aKy0n0dyrttYG48zJzw20f3kItIm8nOMXtDZ2OOyxdDqHUYLvdR-h2wosehw9-vcJrfnZzfjy3h6dTEZn05jyTPmYywY1Iksm7zIIFOC1YIJpCgzJYs8b1KGqoRG1TU0dZGzRIlGCsYBkAVN8W2yP8xtnX3ssfPVg-2dCU9WLE3D7ryEMlAHAyWd7TqHqmqdXgr3XFGoPmOr0uortsAeDewKa6s6qdFI_OZDblmeJAxYqOgnXfyfHmsvvLZmbHvjg_VwsAbXoP_5q1_hJ-t-wKptFP8AgMKeYA</recordid><startdate>20210719</startdate><enddate>20210719</enddate><creator>Baity, Paul G.</creator><creator>Bozhko, Dmytro A.</creator><creator>Macêdo, Rair</creator><creator>Smith, William</creator><creator>Holland, Rory C.</creator><creator>Danilin, Sergey</creator><creator>Seferai, Valentino</creator><creator>Barbosa, João</creator><creator>Peroor, Renju R.</creator><creator>Goldman, Sara</creator><creator>Nasti, Umberto</creator><creator>Paul, Jharna</creator><creator>Hadfield, Robert H.</creator><creator>McVitie, Stephen</creator><creator>Weides, Martin</creator><general>Amer Inst Physics</general><general>American Institute of Physics</general><scope>AJDQP</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9758-3115</orcidid><orcidid>https://orcid.org/0000-0002-8084-4187</orcidid><orcidid>https://orcid.org/0000-0002-3854-8237</orcidid><orcidid>https://orcid.org/0000-0003-3358-798X</orcidid><orcidid>https://orcid.org/0000-0003-3885-2308</orcidid><orcidid>https://orcid.org/0000-0002-1199-2346</orcidid><orcidid>https://orcid.org/0000-0003-0215-4903</orcidid><orcidid>https://orcid.org/0000-0003-4511-6413</orcidid><orcidid>https://orcid.org/0000-0003-2473-3965</orcidid><orcidid>https://orcid.org/0000-0002-7909-9220</orcidid><orcidid>https://orcid.org/0000-0002-2718-6795</orcidid></search><sort><creationdate>20210719</creationdate><title>Strong magnon–photon coupling with chip-integrated YIG in the zero-temperature limit</title><author>Baity, Paul G. ; Bozhko, Dmytro A. ; Macêdo, Rair ; Smith, William ; Holland, Rory C. ; Danilin, Sergey ; Seferai, Valentino ; Barbosa, João ; Peroor, Renju R. ; Goldman, Sara ; Nasti, Umberto ; Paul, Jharna ; Hadfield, Robert H. ; McVitie, Stephen ; Weides, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-e820b4c9d78606fa2ba2ae1ec6fc877d52ef90dfbb0db8724fadca2300e2bb0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>CMOS</topic><topic>Coupling</topic><topic>Data processing</topic><topic>Ferromagnetic resonance</topic><topic>Ferromagnetism</topic><topic>Hybrid systems</topic><topic>Ion beams</topic><topic>Magnons</topic><topic>Microwave circuits</topic><topic>Photons</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Polaritons</topic><topic>Q factors</topic><topic>Science & Technology</topic><topic>Superconductivity</topic><topic>Yttrium</topic><topic>Yttrium-iron garnet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baity, Paul G.</creatorcontrib><creatorcontrib>Bozhko, Dmytro A.</creatorcontrib><creatorcontrib>Macêdo, Rair</creatorcontrib><creatorcontrib>Smith, William</creatorcontrib><creatorcontrib>Holland, Rory C.</creatorcontrib><creatorcontrib>Danilin, Sergey</creatorcontrib><creatorcontrib>Seferai, Valentino</creatorcontrib><creatorcontrib>Barbosa, João</creatorcontrib><creatorcontrib>Peroor, Renju R.</creatorcontrib><creatorcontrib>Goldman, Sara</creatorcontrib><creatorcontrib>Nasti, Umberto</creatorcontrib><creatorcontrib>Paul, Jharna</creatorcontrib><creatorcontrib>Hadfield, Robert H.</creatorcontrib><creatorcontrib>McVitie, Stephen</creatorcontrib><creatorcontrib>Weides, Martin</creatorcontrib><collection>AIP Open Access Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baity, Paul G.</au><au>Bozhko, Dmytro A.</au><au>Macêdo, Rair</au><au>Smith, William</au><au>Holland, Rory C.</au><au>Danilin, Sergey</au><au>Seferai, Valentino</au><au>Barbosa, João</au><au>Peroor, Renju R.</au><au>Goldman, Sara</au><au>Nasti, Umberto</au><au>Paul, Jharna</au><au>Hadfield, Robert H.</au><au>McVitie, Stephen</au><au>Weides, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong magnon–photon coupling with chip-integrated YIG in the zero-temperature limit</atitle><jtitle>Applied physics letters</jtitle><stitle>APPL PHYS LETT</stitle><date>2021-07-19</date><risdate>2021</risdate><volume>119</volume><issue>3</issue><artnum>033502</artnum><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The cross-integration of spin-wave and superconducting technologies is a promising method for creating novel hybrid devices for future information processing technologies to store, manipulate, or convert data in both classical and quantum regimes. Hybrid magnon–polariton systems have been widely studied using bulk Yttrium Iron Garnet (Y3Fe5O12, YIG) and three-dimensional microwave photon cavities. However, limitations in YIG growth have, thus far, prevented its incorporation into CMOS compatible technologies, such as high-quality factor superconducting quantum technology. To overcome this impediment, we have used Plasma Focused Ion Beam (PFIB) technology—taking advantage of precision placement down to the micrometer scale—to integrate YIG with superconducting microwave devices. Ferromagnetic resonance has been measured at milliKelvin temperatures on PFIB-processed YIG samples using planar microwave circuits. Furthermore, we demonstrate strong coupling between superconducting resonators and YIG ferromagnetic resonance modes by maintaining reasonably low loss while reducing the system down to the micrometer scale. This achievement of strong coupling on-chip is a crucial step toward fabrication of functional hybrid quantum devices from spin-wave and superconducting components.</abstract><cop>MELVILLE</cop><pub>Amer Inst Physics</pub><doi>10.1063/5.0054837</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9758-3115</orcidid><orcidid>https://orcid.org/0000-0002-8084-4187</orcidid><orcidid>https://orcid.org/0000-0002-3854-8237</orcidid><orcidid>https://orcid.org/0000-0003-3358-798X</orcidid><orcidid>https://orcid.org/0000-0003-3885-2308</orcidid><orcidid>https://orcid.org/0000-0002-1199-2346</orcidid><orcidid>https://orcid.org/0000-0003-0215-4903</orcidid><orcidid>https://orcid.org/0000-0003-4511-6413</orcidid><orcidid>https://orcid.org/0000-0003-2473-3965</orcidid><orcidid>https://orcid.org/0000-0002-7909-9220</orcidid><orcidid>https://orcid.org/0000-0002-2718-6795</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2021-07, Vol.119 (3), Article 033502 |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0054837 |
source | AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | Applied physics CMOS Coupling Data processing Ferromagnetic resonance Ferromagnetism Hybrid systems Ion beams Magnons Microwave circuits Photons Physical Sciences Physics Physics, Applied Polaritons Q factors Science & Technology Superconductivity Yttrium Yttrium-iron garnet |
title | Strong magnon–photon coupling with chip-integrated YIG in the zero-temperature limit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T22%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20magnon%E2%80%93photon%20coupling%20with%20chip-integrated%20YIG%20in%20the%20zero-temperature%20limit&rft.jtitle=Applied%20physics%20letters&rft.au=Baity,%20Paul%20G.&rft.date=2021-07-19&rft.volume=119&rft.issue=3&rft.artnum=033502&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0054837&rft_dat=%3Cproquest_scita%3E2553113909%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553113909&rft_id=info:pmid/&rfr_iscdi=true |