Time-dependent optimized coupled-cluster method for multielectron dynamics. IV. Approximate consideration of the triple excitation amplitudes
We present a cost-effective treatment of the triple excitation amplitudes in the time-dependent optimized coupled-cluster (TD-OCC) framework called TD-OCCDT(4) for studying intense laser-driven multielectron dynamics. It considers triple excitation amplitudes correct up to the fourth-order in many-b...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2021-06, Vol.154 (23), p.234104-234104 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a cost-effective treatment of the triple excitation amplitudes in the time-dependent optimized coupled-cluster (TD-OCC) framework called TD-OCCDT(4) for studying intense laser-driven multielectron dynamics. It considers triple excitation amplitudes correct up to the fourth-order in many-body perturbation theory and achieves a computational scaling of O(N7), with N being the number of active orbital functions. This method is applied to the electron dynamics in Ne and Ar atoms exposed to an intense near-infrared laser pulse with various intensities. We benchmark our results against the TD complete-active-space self-consistent field (TD-CASSCF), TD-OCC with double and triple excitations (TD-OCCDT), TD-OCC with double excitations (TD-OCCD), and TD Hartree–Fock (TDHF) methods to understand how this approximate scheme performs in describing nonperturbatively nonlinear phenomena, such as field-induced ionization and high-harmonic generation. We find that the TD-OCCDT(4) method performs equally well as the TD-OCCDT method, almost perfectly reproducing the results of the fully correlated TD-CASSCF with a more favorable computational scaling. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0054743 |