Thermal conductivity of short tungsten disulfide nanotubes: A molecular dynamics study

The effects of length, diameter, temperature, and axial strain on the thermal conductivity of armchair and zigzag WS 2 nanotubes are systematically investigated by nonequilibrium molecular dynamics simulations. It is found that the thermal conductivity gradually increases with the increase in the le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2021-06, Vol.129 (23)
Hauptverfasser: Wan, Jing, Tan, Cong, Rong, Yan, Zhang, Lan, Cai, Hai-Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of length, diameter, temperature, and axial strain on the thermal conductivity of armchair and zigzag WS 2 nanotubes are systematically investigated by nonequilibrium molecular dynamics simulations. It is found that the thermal conductivity gradually increases with the increase in the length, while it is insensitive to nanotube diameter variation. The thermal conductivity of armchair and zigzag WS 2 nanotubes is remarkably reduced as temperature increases due to the increment of phonon–phonon scattering and reduction of the phonon mean free path. In addition, compressive strain can increase thermal conductivity due to increased contributions from low-frequency phonons, while the opposite is true in the case of tensile strain. The chirality has a slight influence on the thermal transport properties of the WS 2 nanotube.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0054657