Piezotronic effect in a normally off p-GaN/AlGaN/GaN HEMT toward highly sensitive pressure sensor

We report the effect of stress or strain on the electronic characteristics of a normally off AlGaN/GaN high electron mobility transistor (HEMT) and demonstrate its role as a highly sensitive pressure sensor. We observe that the HEMT drain current exhibits a linear change of 2.5%/bar upon the applica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-06, Vol.118 (24)
Hauptverfasser: Nguyen, Hong-Quan, Nguyen, Thanh, Tanner, Philip, Nguyen, Tuan-Khoa, Foisal, Abu Riduan Md, Fastier-Wooller, Jarred, Nguyen, Tuan-Hung, Phan, Hoang-Phuong, Nguyen, Nam-Trung, Dao, Dzung Viet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the effect of stress or strain on the electronic characteristics of a normally off AlGaN/GaN high electron mobility transistor (HEMT) and demonstrate its role as a highly sensitive pressure sensor. We observe that the HEMT drain current exhibits a linear change of 2.5%/bar upon the application of pressure, which is translated to a strain sensitivity of 1250 ppm−1. This is the highest strain sensitivity ever reported on HEMTs and many other conventional strain sensing configurations. The relative change of drain current is largest when the gate bias is near-threshold and drain bias is slightly larger than the saturation bias. The electron sheet density and mobility changes in the AlGaN/GaN heterointerface under the applied pressure or mechanical strain are explained qualitatively. The spontaneous and piezoelectric-polarization-induced surface and interface charges in the AlGaN/GaN heterojunction can be used to develop very sensitive and robust pressure sensors. The results demonstrate a considerable potential of normally off AlGaN/GaN HEMTs for highly sensitive and reliable mechanical sensing applications with low energy consumption.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0053701