Development of a dedicated instrumentation for electrical and thermal characterization of chemiresistive gas sensors

This work presents the design and validation of a measuring instrumentation for an easy, complete, and tunable characterization of chemiresistive gas sensors based on metal-oxide semiconductors. The equipment, described in depth both as hardware and as software, was designed to monitor the electrica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2021-07, Vol.92 (7), p.074702-074702
Hauptverfasser: Della Ciana, M., Valt, M., Fabbri, B., Bernardoni, P., Guidi, V., Morandi, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents the design and validation of a measuring instrumentation for an easy, complete, and tunable characterization of chemiresistive gas sensors based on metal-oxide semiconductors. The equipment, described in depth both as hardware and as software, was designed to monitor the electrical behavior of gas sensors in controlled thermodynamic conditions. The main goal of this setup is to synchronize the electrical characterization with different measuring conditions, i.e., operating temperature, relative humidity, and gas target concentration. This operation allows us to automate various measurement protocols, otherwise impossible to obtain manually. In particular, this instrumentation permits to correlate the response of a chemiresistive gas sensor to the applied voltage, to its working temperature, and to the gas concentration, automating the acquisition of the current–voltage characteristic and the current–temperature characteristic (Arrhenius plot) of sensing films. The experimental setup was validated by reporting the electrical characterization of a standard metal-oxide-based gas sensing material, such as SnO2, working under different thermodynamic conditions.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0053635