Mechanowetting drives droplet and fluid transport on traveling surface waves generated by light-responsive liquid crystal polymers

In nature, capillary forces are often driving microfluidic propulsion and droplet manipulation, and technologies have been developed to utilize these forces in applications such as lab-on-a-chip biosensors and microfluidic systems. At the same time, responsive materials have been developed that can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2021-06, Vol.33 (6)
Hauptverfasser: De Jong, Edwin, Kremer, Réan, Den Toonder, Jaap M. J., Onck, Patrick R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In nature, capillary forces are often driving microfluidic propulsion and droplet manipulation, and technologies have been developed to utilize these forces in applications such as lab-on-a-chip biosensors and microfluidic systems. At the same time, responsive materials have been developed that can be activated by a variety of external triggers, including light, electric fields, and temperature, to locally deform and create dynamic surface structures, such as traveling waves. Here, we combine these developments into a system that enables capillary-driven droplet transport and fluid propulsion generated by light-induced surface waves in azobenzene-embedded liquid crystal polymers. We demonstrate that the traveling waves are able to efficiently propel fluids by means of mechanowetting. We couple the wave profiles to the fluid simulations using a multiphase computational fluid dynamics approach. We study three different fluid propulsion systems, i.e., peristaltic flow, liquid slug transport, and free-standing droplet transport. The first system operates on a fluid-filled single channel and achieves relative flow speeds of u / u wave < 0.01. In contrast, the slugs and droplets are transported at two orders of magnitude higher speed equal to the wave speed ( u / u wave = 1) by exploiting the mechanowetting effect. We quantify the capillary forces generated by the traveling surface waves. Our method opens new avenues in light-driven (digital) microfluidic systems with enhanced control of fluid flow.
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0050864