Design of radiation conversion target for Compton gamma magnetic spectrometer

This paper analyzes the intrinsic energy resolution, the influence law of multiple Coulomb scattering, the radiation conversion efficiency, and other factors of the Compton radiation conversion target. Based on the essential principle of interaction between gamma rays and matter, the theoretical cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2021-05, Vol.11 (5), p.055011-055011-14
Hauptverfasser: Weng, Xiufeng, Tan, Xinjian, Hei, Dongwei, Zhang, Xiaodong, Sun, Bin, Wei, Kun, Liu, Xiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper analyzes the intrinsic energy resolution, the influence law of multiple Coulomb scattering, the radiation conversion efficiency, and other factors of the Compton radiation conversion target. Based on the essential principle of interaction between gamma rays and matter, the theoretical characteristics and transport law of Compton electrons are analyzed. Through a Monte Carlo simulation, the composition, energy, and angular distribution of electrons emitted from the target surface are calculated; the influence of target parameters, such as target material, thickness, and electron collection angle, on target performance is studied; and then the optimization method of target parameters is established. Finally, the main performance parameters of the Compton radiation conversion target are given. This research reveals how multiple Coulomb scattering angles relate to materials of different types and thicknesses, as well as to the optimal collection angle. A series of optimized parameters for the material, mass thickness, and corresponding energy resolution of radiation conversion target with different conversion efficiencies are obtained.
ISSN:2158-3226
2158-3226
DOI:10.1063/5.0050567