Temperature dependence of the picosecond spin Seebeck effect
We performed temperature-dependent optical pump–THz emission measurements in Y3Fe5O12 (YIG)|Pt from 5 K to room temperature in the presence of an externally applied magnetic field. We study the temperature dependence of the spin Seebeck effect and observe a continuous increase as temperature is decr...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-07, Vol.119 (3) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We performed temperature-dependent optical pump–THz emission measurements in Y3Fe5O12 (YIG)|Pt from 5 K to room temperature in the presence of an externally applied magnetic field. We study the temperature dependence of the spin Seebeck effect and observe a continuous increase as temperature is decreased, opposite to what is observed in electrical measurements, where the spin Seebeck effect is suppressed as 0 K is approached. By quantitatively analyzing the different contributions, we isolate the temperature dependence of the spin-mixing conductance and observe features that are correlated with the bands of magnon spectrum in YIG. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0050205 |