Invariant Gibbs measure and global strong solutions for the Hartree NLS equation in dimension three

In this paper, we consider the defocusing Hartree nonlinear Schrödinger equations on T3 with real-valued and even potential V and Fourier multiplier decaying such as |k|−β. By relying on the method of random averaging operators [Deng et al., arXiv:1910.08492 (2019)], we show that there exists β0, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2021-03, Vol.62 (3)
Hauptverfasser: Deng, Yu, Nahmod, Andrea R., Yue, Haitian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the defocusing Hartree nonlinear Schrödinger equations on T3 with real-valued and even potential V and Fourier multiplier decaying such as |k|−β. By relying on the method of random averaging operators [Deng et al., arXiv:1910.08492 (2019)], we show that there exists β0, which is less than but close to 1, such that for β > β0, we have invariance of the associated Gibbs measure and global existence of strong solutions in its statistical ensemble. In this way, we extend Bourgain’s seminal result [J. Bourgain, J. Math. Pures Appl. 76, 649–702 (1997)], which requires β > 2 in this case.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0045062