A numerical study of a first order modular grad-div stabilization for the magnetohydrodynamics equations
This paper proposes a stabilization method to approximate analytical solutions of magnetohydrodynamics (MHD) equations. The method adds two modular grad-div steps into fully-discrete finite element MHD solver. The main idea in these intrusive steps is to penalize the divergence of the velocity/magne...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a stabilization method to approximate analytical solutions of magnetohydrodynamics (MHD) equations. The method adds two modular grad-div steps into fully-discrete finite element MHD solver. The main idea in these intrusive steps is to penalize the divergence of the velocity/magnetic fields both in L2 and H1-norms. The paper confirms the optimal convergence of the method, and gives numerical experiments which reveal positive effect of the method as in the usual grad-div stabilization. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0042578 |