G-compactness and local G-compactness of topological groups with operations
It is well known that for a Hausdorff topological group X, the limits of convergent sequences in X define a function denoted by lim from the set of all convergent sequences in X to X. This notion has been modified by Connor and Grosse-Erdmann for real functions by replacing lim with an arbitrary lin...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well known that for a Hausdorff topological group X, the limits of convergent sequences in X define a function denoted by lim from the set of all convergent sequences in X to X. This notion has been modified by Connor and Grosse-Erdmann for real functions by replacing lim with an arbitrary linear functional G defined on a linear subspace of the vector space of all real sequences. Recently some authors have extended the concept to the topological group setting and introduced the concepts of G- continuity, G-compactness and G-connectedness. In this paper we prove some results about G-compactness for topological group with operations which include topological groups, topological rings without identity, R-modules, Lie algebras, Jordan algebras, and many others. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0042236 |