Dominant dynamics for a class of singularly perturbed stochastic partial differential equations with quadratic nonlinearities and random Neumann boundary conditions

This work concerns the effective approximation for a class of singularly perturbed stochastic partial differential equations driven by a sufficiently small multiplicative noise with quadratic nonlinearities and random Neumann boundary conditions. By splitting the solution into two parts in the finit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2021-07, Vol.31 (7), p.073109-073109
Hauptverfasser: Lei, Ting, Chen, Guanggan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work concerns the effective approximation for a class of singularly perturbed stochastic partial differential equations driven by a sufficiently small multiplicative noise with quadratic nonlinearities and random Neumann boundary conditions. By splitting the solution into two parts in the finite dimension kernel space and its complement space with some suitable multi-scale argument, it derives rigorously the dominant dynamics, which captures the essential dynamics of the original system as a singular parameter is enough small.
ISSN:1054-1500
1089-7682
DOI:10.1063/5.0042117