Cross-plane thermal conductivity of GaN/AlN superlattices
Heterostructures consisting of alternating GaN/AlN epitaxial layers represent the building blocks of state-of-the-art devices employed for active cooling and energy-saving lightning. Insights into the heat conduction of these structures are essential in the perspective of improving the heat manageme...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-02, Vol.118 (6) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heterostructures consisting of alternating GaN/AlN epitaxial layers represent the building blocks of state-of-the-art devices employed for active cooling and energy-saving lightning. Insights into the heat conduction of these structures are essential in the perspective of improving the heat management for prospective applications. Here, the cross-plane (perpendicular to the sample's surface) thermal conductivity of GaN/AlN superlattices as a function of the layers' thickness is established by employing the
3
ω-method. Moreover, the role of interdiffusion at the interfaces in the phonon scattering is taken into account in the modeling and data treatment. It is found that the cross-plane thermal conductivity of the epitaxial heterostructures can be driven to values as low as 5.9 W/(m·K) comparable with those reported for amorphous films, thus opening wide perspectives for optimized heat management in III-nitride-based epitaxial multilayers. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0040811 |