Mapping of azimuthal B-fields in Z-pinch plasmas using Z-pinch-driven ion deflectometry

B-field measurements are crucial for the study of high-temperature and high-energy-density plasmas. A successful diagnostic method, ion deflectometry (radiography), is commonly employed to measure MGauss magnetic fields in laser-produced plasmas. It is based on the detection of multi-MeV ions, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2021-06, Vol.28 (6)
Hauptverfasser: Munzar, V., Klir, D., Cikhardt, J., Kravarik, J., Kubes, P., Malir, J., Novotny, J., Rezac, K., Shishlov, A. V., Kokshenev, V. A., Cherdizov, R. K., Ratakhin, N. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:B-field measurements are crucial for the study of high-temperature and high-energy-density plasmas. A successful diagnostic method, ion deflectometry (radiography), is commonly employed to measure MGauss magnetic fields in laser-produced plasmas. It is based on the detection of multi-MeV ions, which are deflected in B-fields and measure their path integral. Until now, protons accelerated via laser–target interactions from a point-like source have been utilized for the study of Z-pinch plasmas. In this paper, we present the results of the first Z-pinch-driven ion deflectometry experiments using MeV deuterium beams accelerated within a hybrid gas-puff Z-pinch plasma on the GIT-12 pulse power generator. In our experimental setup, an inserted fiducial deflectometry grid (D-grid) separates the imploding plasma into two regions of the deuteron source and the studied azimuthal B-fields. The D-grid is backlighted by accelerated ions, and its shadow imprinted into the deuteron beams demonstrates ion deflections. In contrast to the employment of the conventional point-like ion source, in our configuration, the ions are emitted from the extensive and divergent source inside the Z-pinch. Instead of having the point ion source, deflected ions are selected via a point projection by a pinhole camera before their detection. Radial distribution of path-integrated B-fields near the axis (within a 15 mm radius) is obtained by analysis of experimental images (deflectograms). Moreover, we present a 2D topological map of local azimuthal B-fields B(r,z) via numerical retrieval of the experimental deflectogram.
ISSN:1070-664X
1089-7674
DOI:10.1063/5.0040515