Ultraviolet-light-triggered isomerization of Rydberg-excited propanal: Real-time capture of ultrafast structural evolution and dynamics investigation

Structure rearrangement processes, such as isomerization, are attracting extensive interest as a potential carrier in molecular scale electronics design. UV-light-triggered isomerization of Rydberg-excited propanal with two UV photons has been investigated with time-resolved photoelectron spectrosco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-02, Vol.154 (5), p.054301-054301
Hauptverfasser: Wang, Yanmei, Gu, Zhenfei, Deng, Xulan, Zhang, Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structure rearrangement processes, such as isomerization, are attracting extensive interest as a potential carrier in molecular scale electronics design. UV-light-triggered isomerization of Rydberg-excited propanal with two UV photons has been investigated with time-resolved photoelectron spectroscopy. By following the photoionization from 3s Rydberg states in the time domain, the ultrafast structural evolution and the corresponding photoisomerization dynamics are observed and tracked in real-time. The conversion barrier for isomerization from cis-propanal to gauche isomer is estimated to be about 1500 ± 100 cm−1 experimentally. Both the photoisomerization yield and the conversion rate have shown strong dependence on the excitation energy. It is observed that whether vibration modes are selectively excited or not, cis-to-gauche photoisomerization of propanal in 3s Rydberg state occurs once the excitation energy is higher than the conversion barrier without any vibrational excitation specificity. This yields a powerful approach to studying structural evolution dynamics in large molecules, which may have applications in molecular devices.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0039802