Effect of interfacial spin configuration on y-type spin–orbit torque switching in an antiferromagnetic heavy alloy/ferromagnet bilayer

This work applied an anisotropic magneto-resistance effect for studying the spin–orbit torque (SOT)-driven magnetization switching in an antiferromagnetic heavy alloy/ferromagnet, PtMn/Co bilayer, under y-type SOT geometry. The tailorable magneto-structural ordering of PtMn provides an additional di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-03, Vol.118 (10)
Hauptverfasser: Yang, Chao-Yao, He, Liang-Ching, Yen, Yu-Shen, Chen, Po-Chuan, Chiu, Jih-Chao, Huang, San-Ding, Tseng, Chih-Hsiang, Lai, Chih-Huang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work applied an anisotropic magneto-resistance effect for studying the spin–orbit torque (SOT)-driven magnetization switching in an antiferromagnetic heavy alloy/ferromagnet, PtMn/Co bilayer, under y-type SOT geometry. The tailorable magneto-structural ordering of PtMn provides an additional dimension to study the interplay among SOT efficiency, the interfacial spin configuration, and the y-type SOT switching. The results reveal that the SOT efficiency of PtMn, effective field generated by current, can be enhanced via forming the L10 (antiferromagnetic) phase after annealing; however, the efficiency appears to be less sensitive to the interfacial spin configuration. On the other hand, the critical current for the y-type SOT switching is even strongly associated with the PtMn/Co interfacial spin configuration. The lowest (highest) critical current is yielded when Co is antiferromagnetically (ferromagnetically) coupled to PtMn through the exchange bias. Engineering the interfacial spin configuration may provide an effective strategy to promote the critical current for the SOT device.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0039138