Multimodal cell with simultaneous electrochemical quartz crystal microbalance and in operando spectroscopic ellipsometry to understand thin film electrochemistry

To inform the development of advanced electrodes for energy storage, water treatment, and catalysis, among other applications, we need to improve our understanding of how material structure evolves during electrochemical operation. Insight into the evolution of local atomic structure during electroc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2021-05, Vol.92 (5), p.053902-053902
Hauptverfasser: Gettler, Ryan, Young, Matthias J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To inform the development of advanced electrodes for energy storage, water treatment, and catalysis, among other applications, we need to improve our understanding of how material structure evolves during electrochemical operation. Insight into the evolution of local atomic structure during electrochemical operation is accessible through a range of sophisticated in operando probes, but techniques for in operando observation of macroscale electrode phenomena (e.g., swelling, dissolution, and chemical degradation) are limited. This macroscale understanding is critical to establish a full picture of electrochemical material behavior. Here, we report a multimodal cell for simultaneous electrochemical quartz crystal microbalance (EQCM) and in operando spectroscopic ellipsometry (SE). This SE-EQCM cell allows for the measurement of mass, thickness, optical properties, and electrochemical properties together in one device. Using polyaniline (PANI) as a test case, we demonstrate the use of this SE-EQCM cell to rapidly measure known phenomena and reproduce a range of prior results during the electrodeposition, electrochemical cycling, and electrochemical degradation of PANI. In particular, the simultaneous mass and thickness measurement afforded by this cell allows us to distinguish known qualitative differences in the degradation of PANI under oxidative and reductive potentials. The SE-EQCM cell we report promises to reveal new insights into the electrochemical behavior of thin film materials for a range of applications.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0035309