Biconditional cordial labeling of cycle related graphs
Let G = (V, E) be a graph. A function f: V → {0, 1} of the graph G is called a Biconditional cordial labeling of G if an induced edge function f*: E → {0, 1} defined by f*(uv)={ 1,iff(u)=f(v)0,iff(u)≠f(v) satisfies the following two conditions. i)|vf(0)−vf(1)|≤1ii)|ef*(0)−ef*(1)|≤1 In this manuscrip...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G = (V, E) be a graph. A function f: V → {0, 1} of the graph G is called a Biconditional cordial labeling of G if an induced edge function f*: E → {0, 1} defined by f*(uv)={ 1,iff(u)=f(v)0,iff(u)≠f(v) satisfies the following two conditions.
i)|vf(0)−vf(1)|≤1ii)|ef*(0)−ef*(1)|≤1
In this manuscript, we prove the existence of the Biconditional cordial labeling for complete bipartite graph, book graph with triangular pages, sunflower graph and web graph. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0028659 |