Biconditional cordial labeling of cycle related graphs

Let G = (V, E) be a graph. A function f: V → {0, 1} of the graph G is called a Biconditional cordial labeling of G if an induced edge function f*: E → {0, 1} defined by f*(uv)={ 1,iff(u)=f(v)0,iff(u)≠f(v) satisfies the following two conditions. i)|vf(0)−vf(1)|≤1ii)|ef*(0)−ef*(1)|≤1 In this manuscrip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kalaimathi, M., Balamurugan, B. J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G = (V, E) be a graph. A function f: V → {0, 1} of the graph G is called a Biconditional cordial labeling of G if an induced edge function f*: E → {0, 1} defined by f*(uv)={ 1,iff(u)=f(v)0,iff(u)≠f(v) satisfies the following two conditions. i)|vf(0)−vf(1)|≤1ii)|ef*(0)−ef*(1)|≤1 In this manuscript, we prove the existence of the Biconditional cordial labeling for complete bipartite graph, book graph with triangular pages, sunflower graph and web graph.
ISSN:0094-243X
1551-7616
DOI:10.1063/5.0028659