Group-based evaluation of temperature and pressure for molecular dynamics simulation with a large time step

Recently, we proposed novel temperature and pressure evaluations in molecular dynamics (MD) simulations to preserve the accuracy up to the third order of a time step, δt [J. Jung, C. Kobayashi, and Y. Sugita, J. Chem. Theory Comput. 15, 84–94 (2019); J. Jung, C. Kobayashi, and Y. Sugita, J. Chem. Ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-12, Vol.153 (23), p.234115-234115
Hauptverfasser: Jung, Jaewoon, Sugita, Yuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, we proposed novel temperature and pressure evaluations in molecular dynamics (MD) simulations to preserve the accuracy up to the third order of a time step, δt [J. Jung, C. Kobayashi, and Y. Sugita, J. Chem. Theory Comput. 15, 84–94 (2019); J. Jung, C. Kobayashi, and Y. Sugita, J. Chem. Phys. 148, 164109 (2018)]. These approaches allow us to extend δt of MD simulations under an isothermal–isobaric condition up to 5 fs with a velocity Verlet integrator. Here, we further improve the isothermal–isobaric MD integration by introducing the group-based evaluations of system temperature and pressure to our previous approach. The group-based scheme increases the accuracy even using inaccurate temperature and pressure evaluations by neglecting the high-frequency vibrational motions of hydrogen atoms. It also improves the overall performance by avoiding iterations in thermostat and barostat updates and by allowing a multiple time step integration such as r-RESPA (reversible reference system propagation algorithm) with our proposed high-precision evaluations of temperature and pressure. Now, the improved integration scheme conserves physical properties of lipid bilayer systems up to δt = 5 fs with velocity Verlet as well as δt = 3.5 fs for fast motions in r-RESPA, respectively.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0027873