Numerical approach of biological tissues/thin layer sensor interface behavior quantification

In this paper, we investigate the behavior of biological tissues coupled to a substrate (sensor) based on a numerical model taking into account the relationship between strain/stress components at the interface. Based on this study, the most appropriate biomechanical factors are understood and quant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sawan, Marwa, Reda, Hilal, Saad, Nadine, Nassar, Georges, Hammoud, Mohammad
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2293
creator Sawan, Marwa
Reda, Hilal
Saad, Nadine
Nassar, Georges
Hammoud, Mohammad
description In this paper, we investigate the behavior of biological tissues coupled to a substrate (sensor) based on a numerical model taking into account the relationship between strain/stress components at the interface. Based on this study, the most appropriate biomechanical factors are understood and quantified in order to optimize the sensor/biological tissue interface conditions. A micromechanical description based on a mathematical formulation has been developed to evaluate the biomechanical behavior provided by a 20 viscoelastic model of Kelvin-Voigt. Based on the results, it appears that the model can be used effectively to characterize in-vivo the dynamic properties of soft tissues in order to adapt the biophysical properties of flexible sensors dedicated to optimal adhesion.
doi_str_mv 10.1063/5.0026643
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0026643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464232266</sourcerecordid><originalsourceid>FETCH-LOGICAL-h252t-d76648fab71ced0ff0432ac8b505fa2ddeaf1e1e59568aac2205b84de5b978723</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOKcX_oOCVwrd8tGk7eUY6oShNwpeCOFtm9iMrtmSdLB_b_aBVy8cnvdwzkHonuAJwYJN-QRjKkTGLtCIcE7SXBBxiUYYl1lKM_Z9jW68X0WozPNihH7eh7VypoYugc3GWajbxOqkMrazv0c5GO8H5aehNX3SwV65xKveW5eYPiinoVZJpVrYmShtB-iD0fExGNvfoisNnVd35ztGXy_Pn_NFuvx4fZvPlmlLOQ1pk8fAhYYqJ7VqsNY4YxTqouKYa6BNo0ATRRQvuSgAakoxr4qsUbwq8yKnbIweT74tdHLjzBrcXlowcjFbyoOGGaM0L8sdiezDiY1lt7FXkCs7uD7GkzQTGY2gEJF6OlG-NuHY5d-XYHlYWnJ5Xpr9AWDlcRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2464232266</pqid></control><display><type>conference_proceeding</type><title>Numerical approach of biological tissues/thin layer sensor interface behavior quantification</title><source>AIP Journals Complete</source><creator>Sawan, Marwa ; Reda, Hilal ; Saad, Nadine ; Nassar, Georges ; Hammoud, Mohammad</creator><contributor>Simos, Theodore ; Tsitouras, Charalambos</contributor><creatorcontrib>Sawan, Marwa ; Reda, Hilal ; Saad, Nadine ; Nassar, Georges ; Hammoud, Mohammad ; Simos, Theodore ; Tsitouras, Charalambos</creatorcontrib><description>In this paper, we investigate the behavior of biological tissues coupled to a substrate (sensor) based on a numerical model taking into account the relationship between strain/stress components at the interface. Based on this study, the most appropriate biomechanical factors are understood and quantified in order to optimize the sensor/biological tissue interface conditions. A micromechanical description based on a mathematical formulation has been developed to evaluate the biomechanical behavior provided by a 20 viscoelastic model of Kelvin-Voigt. Based on the results, it appears that the model can be used effectively to characterize in-vivo the dynamic properties of soft tissues in order to adapt the biophysical properties of flexible sensors dedicated to optimal adhesion.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0026643</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Biomechanics ; Engineering Sciences ; Flexible components ; Mathematical models ; Numerical models ; Optimization ; Sensors ; Soft tissues ; Substrates</subject><ispartof>AIP Conf. Proc. 2293, 1 (2020) ISBN 978-0-7354-4025-8, 2020, Vol.2293 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8695-4216 ; 0000-0002-8413-3307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0026643$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,881,4498,23909,23910,25118,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03322799$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Simos, Theodore</contributor><contributor>Tsitouras, Charalambos</contributor><creatorcontrib>Sawan, Marwa</creatorcontrib><creatorcontrib>Reda, Hilal</creatorcontrib><creatorcontrib>Saad, Nadine</creatorcontrib><creatorcontrib>Nassar, Georges</creatorcontrib><creatorcontrib>Hammoud, Mohammad</creatorcontrib><title>Numerical approach of biological tissues/thin layer sensor interface behavior quantification</title><title>AIP Conf. Proc. 2293, 1 (2020) ISBN 978-0-7354-4025-8</title><description>In this paper, we investigate the behavior of biological tissues coupled to a substrate (sensor) based on a numerical model taking into account the relationship between strain/stress components at the interface. Based on this study, the most appropriate biomechanical factors are understood and quantified in order to optimize the sensor/biological tissue interface conditions. A micromechanical description based on a mathematical formulation has been developed to evaluate the biomechanical behavior provided by a 20 viscoelastic model of Kelvin-Voigt. Based on the results, it appears that the model can be used effectively to characterize in-vivo the dynamic properties of soft tissues in order to adapt the biophysical properties of flexible sensors dedicated to optimal adhesion.</description><subject>Biomechanics</subject><subject>Engineering Sciences</subject><subject>Flexible components</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Sensors</subject><subject>Soft tissues</subject><subject>Substrates</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9kF1LwzAYhYMoOKcX_oOCVwrd8tGk7eUY6oShNwpeCOFtm9iMrtmSdLB_b_aBVy8cnvdwzkHonuAJwYJN-QRjKkTGLtCIcE7SXBBxiUYYl1lKM_Z9jW68X0WozPNihH7eh7VypoYugc3GWajbxOqkMrazv0c5GO8H5aehNX3SwV65xKveW5eYPiinoVZJpVrYmShtB-iD0fExGNvfoisNnVd35ztGXy_Pn_NFuvx4fZvPlmlLOQ1pk8fAhYYqJ7VqsNY4YxTqouKYa6BNo0ATRRQvuSgAakoxr4qsUbwq8yKnbIweT74tdHLjzBrcXlowcjFbyoOGGaM0L8sdiezDiY1lt7FXkCs7uD7GkzQTGY2gEJF6OlG-NuHY5d-XYHlYWnJ5Xpr9AWDlcRg</recordid><startdate>20201124</startdate><enddate>20201124</enddate><creator>Sawan, Marwa</creator><creator>Reda, Hilal</creator><creator>Saad, Nadine</creator><creator>Nassar, Georges</creator><creator>Hammoud, Mohammad</creator><general>American Institute of Physics</general><general>AMER INST PHYSICS</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8695-4216</orcidid><orcidid>https://orcid.org/0000-0002-8413-3307</orcidid></search><sort><creationdate>20201124</creationdate><title>Numerical approach of biological tissues/thin layer sensor interface behavior quantification</title><author>Sawan, Marwa ; Reda, Hilal ; Saad, Nadine ; Nassar, Georges ; Hammoud, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h252t-d76648fab71ced0ff0432ac8b505fa2ddeaf1e1e59568aac2205b84de5b978723</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomechanics</topic><topic>Engineering Sciences</topic><topic>Flexible components</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Sensors</topic><topic>Soft tissues</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sawan, Marwa</creatorcontrib><creatorcontrib>Reda, Hilal</creatorcontrib><creatorcontrib>Saad, Nadine</creatorcontrib><creatorcontrib>Nassar, Georges</creatorcontrib><creatorcontrib>Hammoud, Mohammad</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sawan, Marwa</au><au>Reda, Hilal</au><au>Saad, Nadine</au><au>Nassar, Georges</au><au>Hammoud, Mohammad</au><au>Simos, Theodore</au><au>Tsitouras, Charalambos</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical approach of biological tissues/thin layer sensor interface behavior quantification</atitle><btitle>AIP Conf. Proc. 2293, 1 (2020) ISBN 978-0-7354-4025-8</btitle><date>2020-11-24</date><risdate>2020</risdate><volume>2293</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, we investigate the behavior of biological tissues coupled to a substrate (sensor) based on a numerical model taking into account the relationship between strain/stress components at the interface. Based on this study, the most appropriate biomechanical factors are understood and quantified in order to optimize the sensor/biological tissue interface conditions. A micromechanical description based on a mathematical formulation has been developed to evaluate the biomechanical behavior provided by a 20 viscoelastic model of Kelvin-Voigt. Based on the results, it appears that the model can be used effectively to characterize in-vivo the dynamic properties of soft tissues in order to adapt the biophysical properties of flexible sensors dedicated to optimal adhesion.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0026643</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8695-4216</orcidid><orcidid>https://orcid.org/0000-0002-8413-3307</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conf. Proc. 2293, 1 (2020) ISBN 978-0-7354-4025-8, 2020, Vol.2293 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0026643
source AIP Journals Complete
subjects Biomechanics
Engineering Sciences
Flexible components
Mathematical models
Numerical models
Optimization
Sensors
Soft tissues
Substrates
title Numerical approach of biological tissues/thin layer sensor interface behavior quantification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20approach%20of%20biological%20tissues/thin%20layer%20sensor%20interface%20behavior%20quantification&rft.btitle=AIP%20Conf.%20Proc.%202293,%201%20(2020)%20ISBN%20978-0-7354-4025-8&rft.au=Sawan,%20Marwa&rft.date=2020-11-24&rft.volume=2293&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0026643&rft_dat=%3Cproquest_scita%3E2464232266%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464232266&rft_id=info:pmid/&rfr_iscdi=true