High-responsivity PtSe2 photodetector enhanced by photogating effect

Platinum diselenide (PtSe2), a recently rediscovered two-dimensional transition metal dichalcogenide, has attracted immense attention in the optoelectronic field due to its tunable bandgap, ultrastability, and high electron mobility. However, the applications of PtSe2 photodetectors are seriously re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-01, Vol.118 (1)
Hauptverfasser: Yang, Yajie, Li, Jinshu, Choi, Seunghyuk, Jeon, Sumin, Cho, Jeong Ho, Lee, Byoung Hun, Lee, Sungjoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Platinum diselenide (PtSe2), a recently rediscovered two-dimensional transition metal dichalcogenide, has attracted immense attention in the optoelectronic field due to its tunable bandgap, ultrastability, and high electron mobility. However, the applications of PtSe2 photodetectors are seriously restricted by their low responsivity. In this work, a high-responsivity (5 × 104 A/W) PtSe2 photodetector is obtained by exploiting a photogating effect; this is induced by the hole-trapping states, which are attributed to Se vacancies. Moreover, a gate-tunable transition between the positive and negative photoconductances is observed under light illumination. A theoretical calculation based on the Boltzmann transport theory is performed to explain the carrier transport of PtSe2, considering the contributions of charged impurity, acoustic phonon, and polar optical phonon scattering.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0025884