Predicting the near-wall velocity of wall turbulence using a neural network for particle image velocimetry
Near-wall velocity prediction for wall-bounded turbulence is useful for constructing a wall model and estimating dissipation and wall shear stress. A convolutional neural network is developed to improve the near-wall velocity prediction and spatial resolution for wall-bounded turbulent velocity fiel...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2020-11, Vol.32 (11) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Near-wall velocity prediction for wall-bounded turbulence is useful for constructing a wall model and estimating dissipation and wall shear stress. A convolutional neural network is developed to improve the near-wall velocity prediction and spatial resolution for wall-bounded turbulent velocity fields obtained using particle image velocimetry (PIV). To establish the relationship between the low-resolution and high-resolution fields, this machine learning model is trained on a synthetic PIV dataset generated based on velocity fields obtained from the direct numerical simulation of turbulent channel flows at Reτ = 1000. Using a test dataset with a higher Reynolds number of Reτ = 5200, the performance of this model is assessed in terms of instantaneous fields, error analysis, velocity statistics, and energy spectra. The influences of the interrogation window, image resolution, and particle concentration on the performance of this network are also considered. We further apply this network to practical PIV data from a turbulent boundary layer at Reτ = 2200 to assess the network performance under real experimental conditions. The results indicate that the proposed machine-learning-based model can predict missing near-wall velocity fields and enhance the spatial resolution of PIV fields, but the accuracy for Reynolds shear stress prediction needs to be further improved. The presented approach shows the potential ability to predict the near-wall instantaneous velocity of high-Reynolds-number turbulence from low-Reynolds-number flow fields. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0023786 |