Deep learning approaches for thermographic imaging

In this paper, we investigate two deep learning approaches to recovering initial temperature profiles from thermographic images in non-destructive material testing. First, we trained a deep neural network (DNN) in an end-to-end fashion by directly feeding the surface temperature measurements to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-10, Vol.128 (15)
Hauptverfasser: Kovács, Péter, Lehner, Bernhard, Thummerer, Gregor, Mayr, Günther, Burgholzer, Peter, Huemer, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate two deep learning approaches to recovering initial temperature profiles from thermographic images in non-destructive material testing. First, we trained a deep neural network (DNN) in an end-to-end fashion by directly feeding the surface temperature measurements to the DNN. Second, we turned the surface temperature measurements into virtual waves (a recently developed concept in thermography), which we then fed to the DNN. To demonstrate the effectiveness of these methods, we implemented a data generator and created a dataset comprising a total of 100 000 simulated temperature measurement images. With the objective of determining a suitable baseline, we investigated several state-of-the-art model-based reconstruction methods, including Abel transformation, curvelet denoising, and time- and frequency-domain synthetic aperture focusing techniques. Additionally, a physical phantom was created to support evaluation on completely unseen real-world data. The results of several experiments suggest that both the end-to-end and the hybrid approach outperformed the baseline in terms of reconstruction accuracy. The end-to-end approach required the least amount of domain knowledge and was the most computationally efficient one. The hybrid approach required extensive domain knowledge and was more computationally expensive than the end-to-end approach. However, the virtual waves served as meaningful features that convert the complex task of the end-to-end reconstruction into a less demanding undertaking. This in turn yielded better reconstructions with the same number of training samples compared to the end-to-end approach. Additionally, it allowed more compact network architectures and use of prior knowledge, such as sparsity and non-negativity. The proposed method is suitable for non-destructive testing (NDT) in 2D where the amplitudes along the objects are considered to be constant (e.g., for metallic wires). To encourage the development of other deep-learning-based reconstruction techniques, we release both the synthetic and the real-world datasets along with the implementation of the deep learning methods to the research community.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0020404