Quantum neuromorphic computing

Quantum neuromorphic computing physically implements neural networks in brain-inspired quantum hardware to speed up their computation. In this perspective article, we show that this emerging paradigm could make the best use of the existing and near future intermediate size quantum computers. Some ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-10, Vol.117 (15)
Hauptverfasser: Marković, Danijela, Grollier, Julie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum neuromorphic computing physically implements neural networks in brain-inspired quantum hardware to speed up their computation. In this perspective article, we show that this emerging paradigm could make the best use of the existing and near future intermediate size quantum computers. Some approaches are based on parametrized quantum circuits and use neural network-inspired algorithms to train them. Other approaches, closer to classical neuromorphic computing, take advantage of the physical properties of quantum oscillator assemblies to mimic neurons and synapses to compute. We discuss the different implementations of quantum neuromorphic networks with digital and analog circuits, highlight their respective advantages, and review exciting recent experimental results.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0020014