Rainbow vertex connection number of square, glue, middle and splitting graph of brush graph

A vertex-colored graph G = (V(G), E(G)) is said a rainbow vertex-connected, if for every two vertices u and v in V(G), there exist a u−v path with all internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by rvc(G), is the smallest number of colors needed to make...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Helmi, Helmi, Vilgalita, Brella Glysentia, Fran, Fransiskus, Putra, Dany Riansyah
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2268
creator Helmi, Helmi
Vilgalita, Brella Glysentia
Fran, Fransiskus
Putra, Dany Riansyah
description A vertex-colored graph G = (V(G), E(G)) is said a rainbow vertex-connected, if for every two vertices u and v in V(G), there exist a u−v path with all internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by rvc(G), is the smallest number of colors needed to make G rainbow vertex-connected. Let n is integers at least 2, Bn is a brush graph with 2n vertices. In this paper, we determine the rainbow vertex connection number of square, glue, middle and splitting graph of brush graph.
doi_str_mv 10.1063/5.0017092
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0017092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2443700068</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-bcb543164e1ca50ed172d92a7310d17ef34c99cc1729524cdb7aa97c5a773ffb3</originalsourceid><addsrcrecordid>eNotkFtLAzEQhYMoWKsP_oOAb-LWySbZNI9SvEFBEAXBh5Bks23KNrtNsl7-vVvqy5yZ4WMOcxC6JDAjUNFbPgMgAmR5hCaEc1KIilTHaAIgWVEy-nGKzlLaAJRSiPkEfb5qH0z3jb9czO4H2y4EZ7PvAg7D1riIuwan3aCju8Grdhjr1td167AONU5963P2YYVXUffrPWvikNaH8RydNLpN7uJfp-j94f5t8VQsXx6fF3fLoieU5sJYwxklFXPEag6uJqKsZakFJTD2rqHMSmntuJa8ZLY2QmspLNdC0KYxdIquDnf72O0Gl7LadEMMo6UqGaMCAKr5SF0fqGR91vsPVR_9VsdfRUDtw1Nc_YdH_wAszWFf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2443700068</pqid></control><display><type>conference_proceeding</type><title>Rainbow vertex connection number of square, glue, middle and splitting graph of brush graph</title><source>AIP Journals Complete</source><creator>Helmi, Helmi ; Vilgalita, Brella Glysentia ; Fran, Fransiskus ; Putra, Dany Riansyah</creator><contributor>Noviani, Evi ; Kusnandar, Dadan ; Yundari, Yundari</contributor><creatorcontrib>Helmi, Helmi ; Vilgalita, Brella Glysentia ; Fran, Fransiskus ; Putra, Dany Riansyah ; Noviani, Evi ; Kusnandar, Dadan ; Yundari, Yundari</creatorcontrib><description>A vertex-colored graph G = (V(G), E(G)) is said a rainbow vertex-connected, if for every two vertices u and v in V(G), there exist a u−v path with all internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by rvc(G), is the smallest number of colors needed to make G rainbow vertex-connected. Let n is integers at least 2, Bn is a brush graph with 2n vertices. In this paper, we determine the rainbow vertex connection number of square, glue, middle and splitting graph of brush graph.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0017092</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Apexes ; Brushes ; Graph theory ; Splitting</subject><ispartof>AIP conference proceedings, 2020, Vol.2268 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0017092$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27902,27903,76129</link.rule.ids></links><search><contributor>Noviani, Evi</contributor><contributor>Kusnandar, Dadan</contributor><contributor>Yundari, Yundari</contributor><creatorcontrib>Helmi, Helmi</creatorcontrib><creatorcontrib>Vilgalita, Brella Glysentia</creatorcontrib><creatorcontrib>Fran, Fransiskus</creatorcontrib><creatorcontrib>Putra, Dany Riansyah</creatorcontrib><title>Rainbow vertex connection number of square, glue, middle and splitting graph of brush graph</title><title>AIP conference proceedings</title><description>A vertex-colored graph G = (V(G), E(G)) is said a rainbow vertex-connected, if for every two vertices u and v in V(G), there exist a u−v path with all internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by rvc(G), is the smallest number of colors needed to make G rainbow vertex-connected. Let n is integers at least 2, Bn is a brush graph with 2n vertices. In this paper, we determine the rainbow vertex connection number of square, glue, middle and splitting graph of brush graph.</description><subject>Apexes</subject><subject>Brushes</subject><subject>Graph theory</subject><subject>Splitting</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkFtLAzEQhYMoWKsP_oOAb-LWySbZNI9SvEFBEAXBh5Bks23KNrtNsl7-vVvqy5yZ4WMOcxC6JDAjUNFbPgMgAmR5hCaEc1KIilTHaAIgWVEy-nGKzlLaAJRSiPkEfb5qH0z3jb9czO4H2y4EZ7PvAg7D1riIuwan3aCju8Grdhjr1td167AONU5963P2YYVXUffrPWvikNaH8RydNLpN7uJfp-j94f5t8VQsXx6fF3fLoieU5sJYwxklFXPEag6uJqKsZakFJTD2rqHMSmntuJa8ZLY2QmspLNdC0KYxdIquDnf72O0Gl7LadEMMo6UqGaMCAKr5SF0fqGR91vsPVR_9VsdfRUDtw1Nc_YdH_wAszWFf</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Helmi, Helmi</creator><creator>Vilgalita, Brella Glysentia</creator><creator>Fran, Fransiskus</creator><creator>Putra, Dany Riansyah</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20200915</creationdate><title>Rainbow vertex connection number of square, glue, middle and splitting graph of brush graph</title><author>Helmi, Helmi ; Vilgalita, Brella Glysentia ; Fran, Fransiskus ; Putra, Dany Riansyah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-bcb543164e1ca50ed172d92a7310d17ef34c99cc1729524cdb7aa97c5a773ffb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apexes</topic><topic>Brushes</topic><topic>Graph theory</topic><topic>Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helmi, Helmi</creatorcontrib><creatorcontrib>Vilgalita, Brella Glysentia</creatorcontrib><creatorcontrib>Fran, Fransiskus</creatorcontrib><creatorcontrib>Putra, Dany Riansyah</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helmi, Helmi</au><au>Vilgalita, Brella Glysentia</au><au>Fran, Fransiskus</au><au>Putra, Dany Riansyah</au><au>Noviani, Evi</au><au>Kusnandar, Dadan</au><au>Yundari, Yundari</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Rainbow vertex connection number of square, glue, middle and splitting graph of brush graph</atitle><btitle>AIP conference proceedings</btitle><date>2020-09-15</date><risdate>2020</risdate><volume>2268</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A vertex-colored graph G = (V(G), E(G)) is said a rainbow vertex-connected, if for every two vertices u and v in V(G), there exist a u−v path with all internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by rvc(G), is the smallest number of colors needed to make G rainbow vertex-connected. Let n is integers at least 2, Bn is a brush graph with 2n vertices. In this paper, we determine the rainbow vertex connection number of square, glue, middle and splitting graph of brush graph.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0017092</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2020, Vol.2268 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0017092
source AIP Journals Complete
subjects Apexes
Brushes
Graph theory
Splitting
title Rainbow vertex connection number of square, glue, middle and splitting graph of brush graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Rainbow%20vertex%20connection%20number%20of%20square,%20glue,%20middle%20and%20splitting%20graph%20of%20brush%20graph&rft.btitle=AIP%20conference%20proceedings&rft.au=Helmi,%20Helmi&rft.date=2020-09-15&rft.volume=2268&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0017092&rft_dat=%3Cproquest_scita%3E2443700068%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443700068&rft_id=info:pmid/&rfr_iscdi=true