Rainbow vertex connection number of square, glue, middle and splitting graph of brush graph

A vertex-colored graph G = (V(G), E(G)) is said a rainbow vertex-connected, if for every two vertices u and v in V(G), there exist a u−v path with all internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by rvc(G), is the smallest number of colors needed to make...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Helmi, Helmi, Vilgalita, Brella Glysentia, Fran, Fransiskus, Putra, Dany Riansyah
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A vertex-colored graph G = (V(G), E(G)) is said a rainbow vertex-connected, if for every two vertices u and v in V(G), there exist a u−v path with all internal vertices have distinct colors. The rainbow vertex-connection number of G, denoted by rvc(G), is the smallest number of colors needed to make G rainbow vertex-connected. Let n is integers at least 2, Bn is a brush graph with 2n vertices. In this paper, we determine the rainbow vertex connection number of square, glue, middle and splitting graph of brush graph.
ISSN:0094-243X
1551-7616
DOI:10.1063/5.0017092