Orientable and non-orientable genus of the intersection power graph of finite groups

The intersection power graph ΓI (G) of a group G is defined as follows: take G as vertex set and two distinct vertices x and y are adjacent in ΓI (G) if there exists a non-identity element z ∈ G such that xm=z=yn, for some m, n ∈ N and e is adjacent to all other vertices, where e is the identity ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP conference proceedings 2020-10, Vol.2261 (1)
Hauptverfasser: Fathima, S. Syed Ali, Aprose, M. Aysha
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The intersection power graph ΓI (G) of a group G is defined as follows: take G as vertex set and two distinct vertices x and y are adjacent in ΓI (G) if there exists a non-identity element z ∈ G such that xm=z=yn, for some m, n ∈ N and e is adjacent to all other vertices, where e is the identity element of the group G. In this paper, certain finite groups whose intersection power graphs can be embedded on the torus or projective plane are classified.
ISSN:0094-243X
1551-7616
DOI:10.1063/5.0016842