Modeling the dielectric constants of crystals using machine learning

The relative permittivity of a crystal is a fundamental property that links microscopic chemical bonding to macroscopic electromagnetic response. Multiple models, including analytical, numerical, and statistical descriptions, have been made to understand and predict dielectric behavior. Analytical m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-07, Vol.153 (2), p.024503-024503
Hauptverfasser: Morita, Kazuki, Davies, Daniel W., Butler, Keith T., Walsh, Aron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relative permittivity of a crystal is a fundamental property that links microscopic chemical bonding to macroscopic electromagnetic response. Multiple models, including analytical, numerical, and statistical descriptions, have been made to understand and predict dielectric behavior. Analytical models are often limited to a particular type of compound, whereas machine learning (ML) models often lack interpretability. Here, we combine supervised ML, density functional perturbation theory, and analysis based on game theory to predict and explain the physical trends in optical dielectric constants of crystals. Two ML models, support vector regression and deep neural networks, were trained on a dataset of 1364 dielectric constants. Analysis of Shapley additive explanations of the ML models reveals that they recover correlations described by textbook Clausius–Mossotti and Penn models, which gives confidence in their ability to describe physical behavior, while providing superior predictive power.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0013136