Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation

Chemical etching and Al2O3 dielectric passivation were used to minimize nonradiative sidewall defects in InGaN/GaN microLEDs (mesa diameter = 2–100 μm), resulting in an increase in external quantum efficiency (EQE) as the LED size was decreased. Peak EQEs increased from 8%–10% to 12%–13.5% for mesa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-06, Vol.116 (25)
Hauptverfasser: Ley, Ryan T., Smith, Jordan M., Wong, Matthew S., Margalith, Tal, Nakamura, Shuji, DenBaars, Steven P., Gordon, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemical etching and Al2O3 dielectric passivation were used to minimize nonradiative sidewall defects in InGaN/GaN microLEDs (mesa diameter = 2–100 μm), resulting in an increase in external quantum efficiency (EQE) as the LED size was decreased. Peak EQEs increased from 8%–10% to 12%–13.5% for mesa diameters from 100 μm to 2 μm, respectively, and no measurable leakage currents were seen in current density–voltage (J–V) characteristics. The position and shape of EQE curves for all devices were essentially identical, indicating size-independent ABC model (Shockley–Read–Hall, radiative, and Auger recombination) coefficients-behavior that is not typical of microLEDs as the size decreases. These trends can be explained by enhancement in light extraction efficiency (LEE), which is only observable when sidewall defects are minimized, for the smallest LED sizes. Detailed ray-tracing simulations substantiate the LEE enhancements.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0011651