All-silicon polarized light source based on electrically excited whispering gallery modes in inversely tapered photonic resonators
As a result of its indirect bandgap, emitting photons from silicon in an efficient way remains challenging. Silicon light emitters that can be integrated seamlessly on a CMOS platform have been demonstrated; however, none satisfies an ensemble of key requirements such as a small footprint, room-temp...
Gespeichert in:
Veröffentlicht in: | APL materials 2020-06, Vol.8 (6), p.061110-061110-8, Article 061110 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As a result of its indirect bandgap, emitting photons from silicon in an efficient way remains challenging. Silicon light emitters that can be integrated seamlessly on a CMOS platform have been demonstrated; however, none satisfies an ensemble of key requirements such as a small footprint, room-temperature operation at low voltages, and emission of narrow and polarized lines with a high spectral power density in the near-infrared range. Here, we present an all-silicon electrically driven light emitting diode that consists of an inversely tapered half-ellipsoidal silicon photonic resonator containing a p–n junction used to excite whispering gallery modes (WGMs) inside the resonator. Under low voltage operation at room temperature, such a photonic silicon light-emitting diode exhibits a band-edge emission (900–1300 nm) with a wall-plug efficiency of 10−4. The emitted spectrum is amplified in multiple WGMs and shows peaks that are polarized and have linewidths Δλ as narrow as 0.33 nm and spectral power densities as high as 8 mW cm−2 nm−1. Considering its small footprint of ∼1 µm and remarkable emission characteristics, this silicon light source constitutes a significant step ahead toward fully integrated on-chip silicon photonics. |
---|---|
ISSN: | 2166-532X 2166-532X |
DOI: | 10.1063/5.0007759 |