Coalescence of vertically aligned drops over a superhydrophobic surface
The coalescence process of two liquid droplets where one is placed initially over the other is investigated. The lower drop is placed over a horizontal surface in a sessile configuration. The liquids of interest selected are water, glycerin, and Cs-alloy. The two liquid drops merge under atmospheric...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2020-05, Vol.32 (5) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The coalescence process of two liquid droplets where one is placed initially over the other is investigated. The lower drop is placed over a horizontal surface in a sessile configuration. The liquids of interest selected are water, glycerin, and Cs-alloy. The two liquid drops merge under atmospheric conditions. The substrate is superhydrophobic with respect to the three liquids, the equilibrium contact angle being 150°. For the combined drop, the Bond number is ∼0.2. Numerical simulations have been performed in an axisymmetric coordinate system along with supporting experiments. A variety of contact line models reported in the literature have been adopted and compared. Experiments are carried out for validation against simulation with water as the liquid medium. The coalescence phenomenon is recorded by a high-speed camera. The two drops coalesce spontaneously and generate interfacial shapes, velocity fields, footprint, and wall shear stress in time. In water, the combined drop recoils from the surface before spreading over the surface and approaching equilibrium. This trend, including the instant and height of recoil, is correctly realized in the contact line models. Additionally, two distinct timescales originate during the coalescence process. These are associated with inertia and surface tension at small times and inertia–viscosity for longer durations. The instantaneous footprint radius and the average wall shear stress fall to zero during recoil, increase then to a maximum, and diminish to zero with damped oscillations over the longer timescale. Recoil is seen in water as well as Cs-alloy, but not in glycerin. Despite differences in the instantaneous data, these predictions are broadly reproduced by each of the contact line models. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0007419 |