Simultaneous measurement of rheological properties in a microfluidic rheometer
Microfluidic rheometry is considered to be a potential alternative to conventional rheometry for the rheological characterization of viscoelastic solutions having relatively low viscoelastic properties. None of the microfluidic platforms introduced so far, however, can be used for the measurements o...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2020-05, Vol.32 (5) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microfluidic rheometry is considered to be a potential alternative to conventional rheometry for the rheological characterization of viscoelastic solutions having relatively low viscoelastic properties. None of the microfluidic platforms introduced so far, however, can be used for the measurements of multiple rheological properties in the same device. In this work, I present the first microfluidic platform, named the “μ-rheometer,” which allows for the simultaneous measurement of zero-shear viscosity η0 and longest shear relaxation time λ. This is achieved by transforming the original “flow rate controlled” platform presented by Del Giudice et al., “Rheometry-on-a-chip: Measuring the relaxation time of a viscoelastic liquid through particle migration in microchannel flows,” Lab Chip 15, 783–792 (2015) into a “pressure drop controlled” microfluidic device, by replacing a syringe pump with a pressure pump. The novel device has been tested by measuring both η0 and λ for a number of polyethylene oxide solutions in glycerol–water 25 wt. % and pure water, respectively. Its effectiveness has been corroborated by means of a direct comparison with a conventional rotational rheometer. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0006060 |