Self‐consistent stability analysis of ablation fronts with small Froude numbers
The linear growth rate of the Rayleigh–Taylor instability is calculated for accelerated ablation fronts with small Froude numbers (Fr≪1). The derivation is carried out self‐consistently by including the effects of finite thermal conductivity (κ∼T ν) and density gradient scale length (L). It is shown...
Gespeichert in:
Veröffentlicht in: | Physics of Plasmas 1996-12, Vol.3 (12), p.4665-4676 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The linear growth rate of the Rayleigh–Taylor instability is calculated for accelerated ablation fronts with small Froude numbers (Fr≪1). The derivation is carried out self‐consistently by including the effects of finite thermal conductivity (κ∼T
ν) and density gradient scale length (L). It is shown that long‐wavelength modes with wave numbers kL
0≪1 [L
0=νν/(ν+1)ν+1 min(L)] have a growth rate γ≂√A
T
kg−βkV
a
, where V
a
is the ablation velocity, g is the acceleration, A
T
=1+O[(kL
0)1/ν], and 1 |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.872078 |