Self‐consistent stability analysis of ablation fronts with small Froude numbers

The linear growth rate of the Rayleigh–Taylor instability is calculated for accelerated ablation fronts with small Froude numbers (Fr≪1). The derivation is carried out self‐consistently by including the effects of finite thermal conductivity (κ∼T ν) and density gradient scale length (L). It is shown...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of Plasmas 1996-12, Vol.3 (12), p.4665-4676
Hauptverfasser: Goncharov, V. N., Betti, R., McCrory, R. L., Verdon, C. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The linear growth rate of the Rayleigh–Taylor instability is calculated for accelerated ablation fronts with small Froude numbers (Fr≪1). The derivation is carried out self‐consistently by including the effects of finite thermal conductivity (κ∼T ν) and density gradient scale length (L). It is shown that long‐wavelength modes with wave numbers kL 0≪1 [L 0=νν/(ν+1)ν+1 min(L)] have a growth rate γ≂√A T kg−βkV a , where V a is the ablation velocity, g is the acceleration, A T =1+O[(kL 0)1/ν], and 1
ISSN:1070-664X
1089-7674
DOI:10.1063/1.872078