Amplitude equations for electrostatic waves: Universal singular behavior in the limit of weak instability
An amplitude equation for an unstable mode in a collisionless plasma is derived from the dynamics on the unstable manifold of the equilibrium F 0(v). The mode eigenvalue arises from a simple zero of the dielectric ε k (z); as the linear growth rate γ vanishes, the eigenvalue merges with the continuo...
Gespeichert in:
Veröffentlicht in: | Physics of Plasmas 1995-01, Vol.2 (1), p.97-128 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An amplitude equation for an unstable mode in a collisionless plasma is derived from the dynamics on the unstable manifold of the equilibrium F
0(v). The mode eigenvalue arises from a simple zero of the dielectric ε
k
(z); as the linear growth rate γ vanishes, the eigenvalue merges with the continuous spectrum on the imaginary axis and disappears. The evolution of the mode amplitude ρ(t) is studied using an expansion in ρ. As γ→0+, the expansion coefficients diverge, but these singularities are absorbed by rescaling the amplitude: ρ(t)≡γ2
r(γt). This renders the theory finite and also indicates that the electric field exhibits trapping scaling E∼γ2. These singularities and scalings are independent of the specific F
0(v) considered. The asymptotic dynamics of r(τ) can depend on F
0 only through exp iξ where dε
k
/dz=‖ε
k
’
‖exp−iξ/2. Similar results also hold for the electric field and distribution function. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.871120 |