Noncommutative differential geometry on deformed quantum mechanical phase spaces

The problem of formulating noncommutative differential geometry on multiparametric deformations of arbitrary quantum mechanical phase spaces involving bosonic or (even or odd‐dimensional) fermionic variables is investigated. A suitable enlargement of the basic quadratic algebras enables one to solve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1994-04, Vol.35 (4), p.1984-1991
Hauptverfasser: Parashar, Preeti, Bhasin, V. S., Soni, S. K.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1991
container_issue 4
container_start_page 1984
container_title Journal of mathematical physics
container_volume 35
creator Parashar, Preeti
Bhasin, V. S.
Soni, S. K.
description The problem of formulating noncommutative differential geometry on multiparametric deformations of arbitrary quantum mechanical phase spaces involving bosonic or (even or odd‐dimensional) fermionic variables is investigated. A suitable enlargement of the basic quadratic algebras enables one to solve all the consistency conditions on the calculus with the help of plausible ansatzes.
doi_str_mv 10.1063/1.530583
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_530583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-c6c4543c3a0031978082ff6fb049773ed30dc5ce4f641d125c0009c1a513e40b3</originalsourceid><addsrcrecordid>eNqd0M1KAzEUBeAgCtYq-AhZ6mLqzSSZySyl-AdFXeh6SG9u7EgzGZNpoW-vpeIDuDqbjwPnMHYpYCagkjdipiVoI4_YRIBpirrS5phNAMqyKJUxp-ws508AIYxSE_b6HHuMIWxGO3Zb4q7znhL1Y2fX_INioDHteOy5Ix9TIMe_NrYfN4EHwpXtO_xxw8pm4nmwSPmcnXi7znTxm1P2fn_3Nn8sFi8PT_PbRYFlo8cCK1RaSZQWQIqmNmBK7yu_BNXUtSQnwaFGUr5SwolSIwA0KKwWkhQs5ZRdHXoxxZwT-XZIXbBp1wpo90-0oj088UOvDzRjt58Z-3_ZbUx_rh2cl99ma2y7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Noncommutative differential geometry on deformed quantum mechanical phase spaces</title><source>AIP Digital Archive</source><creator>Parashar, Preeti ; Bhasin, V. S. ; Soni, S. K.</creator><creatorcontrib>Parashar, Preeti ; Bhasin, V. S. ; Soni, S. K.</creatorcontrib><description>The problem of formulating noncommutative differential geometry on multiparametric deformations of arbitrary quantum mechanical phase spaces involving bosonic or (even or odd‐dimensional) fermionic variables is investigated. A suitable enlargement of the basic quadratic algebras enables one to solve all the consistency conditions on the calculus with the help of plausible ansatzes.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.530583</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1994-04, Vol.35 (4), p.1984-1991</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-c6c4543c3a0031978082ff6fb049773ed30dc5ce4f641d125c0009c1a513e40b3</citedby><cites>FETCH-LOGICAL-c295t-c6c4543c3a0031978082ff6fb049773ed30dc5ce4f641d125c0009c1a513e40b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.530583$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,1553,27901,27902,76133</link.rule.ids></links><search><creatorcontrib>Parashar, Preeti</creatorcontrib><creatorcontrib>Bhasin, V. S.</creatorcontrib><creatorcontrib>Soni, S. K.</creatorcontrib><title>Noncommutative differential geometry on deformed quantum mechanical phase spaces</title><title>Journal of mathematical physics</title><description>The problem of formulating noncommutative differential geometry on multiparametric deformations of arbitrary quantum mechanical phase spaces involving bosonic or (even or odd‐dimensional) fermionic variables is investigated. A suitable enlargement of the basic quadratic algebras enables one to solve all the consistency conditions on the calculus with the help of plausible ansatzes.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KAzEUBeAgCtYq-AhZ6mLqzSSZySyl-AdFXeh6SG9u7EgzGZNpoW-vpeIDuDqbjwPnMHYpYCagkjdipiVoI4_YRIBpirrS5phNAMqyKJUxp-ws508AIYxSE_b6HHuMIWxGO3Zb4q7znhL1Y2fX_INioDHteOy5Ix9TIMe_NrYfN4EHwpXtO_xxw8pm4nmwSPmcnXi7znTxm1P2fn_3Nn8sFi8PT_PbRYFlo8cCK1RaSZQWQIqmNmBK7yu_BNXUtSQnwaFGUr5SwolSIwA0KKwWkhQs5ZRdHXoxxZwT-XZIXbBp1wpo90-0oj088UOvDzRjt58Z-3_ZbUx_rh2cl99ma2y7</recordid><startdate>19940401</startdate><enddate>19940401</enddate><creator>Parashar, Preeti</creator><creator>Bhasin, V. S.</creator><creator>Soni, S. K.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19940401</creationdate><title>Noncommutative differential geometry on deformed quantum mechanical phase spaces</title><author>Parashar, Preeti ; Bhasin, V. S. ; Soni, S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-c6c4543c3a0031978082ff6fb049773ed30dc5ce4f641d125c0009c1a513e40b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parashar, Preeti</creatorcontrib><creatorcontrib>Bhasin, V. S.</creatorcontrib><creatorcontrib>Soni, S. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parashar, Preeti</au><au>Bhasin, V. S.</au><au>Soni, S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncommutative differential geometry on deformed quantum mechanical phase spaces</atitle><jtitle>Journal of mathematical physics</jtitle><date>1994-04-01</date><risdate>1994</risdate><volume>35</volume><issue>4</issue><spage>1984</spage><epage>1991</epage><pages>1984-1991</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The problem of formulating noncommutative differential geometry on multiparametric deformations of arbitrary quantum mechanical phase spaces involving bosonic or (even or odd‐dimensional) fermionic variables is investigated. A suitable enlargement of the basic quadratic algebras enables one to solve all the consistency conditions on the calculus with the help of plausible ansatzes.</abstract><doi>10.1063/1.530583</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1994-04, Vol.35 (4), p.1984-1991
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_1_530583
source AIP Digital Archive
title Noncommutative differential geometry on deformed quantum mechanical phase spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncommutative%20differential%20geometry%20on%20deformed%20quantum%20mechanical%20phase%20spaces&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Parashar,%20Preeti&rft.date=1994-04-01&rft.volume=35&rft.issue=4&rft.spage=1984&rft.epage=1991&rft.pages=1984-1991&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.530583&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true