Noncommutative differential geometry on deformed quantum mechanical phase spaces
The problem of formulating noncommutative differential geometry on multiparametric deformations of arbitrary quantum mechanical phase spaces involving bosonic or (even or odd‐dimensional) fermionic variables is investigated. A suitable enlargement of the basic quadratic algebras enables one to solve...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1994-04, Vol.35 (4), p.1984-1991 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The problem of formulating noncommutative differential geometry on multiparametric deformations of arbitrary quantum mechanical phase spaces involving bosonic or (even or odd‐dimensional) fermionic variables is investigated. A suitable enlargement of the basic quadratic algebras enables one to solve all the consistency conditions on the calculus with the help of plausible ansatzes. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.530583 |