Meixner–Pollaczek polynomials and the Heisenberg algebra
An alternative proof is given for the connection between a system of continuous Hahn polynomials and identities for symmetric elements in the Heisenberg algebra, which was first observed by Bender, Mead, and Pinsky [Phys. Rev. Lett. 5 6, 2445 (1986); J. Math. Phys. 2 8, 509 (1987)]. The continuous H...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1989-04, Vol.30 (4), p.767-769 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An alternative proof is given for the connection between a system of continuous Hahn polynomials and identities for symmetric elements in the Heisenberg algebra, which was first observed by Bender, Mead, and Pinsky [Phys. Rev. Lett. 5
6, 2445 (1986); J. Math. Phys. 2
8, 509 (1987)]. The continuous Hahn polynomials turn out to be Meixner–Pollaczek polynomials. Use is made of the connection between Laguerre polynomials and Meixner–Pollaczek polynomials, the Rodrigues formula for Laguerre polynomials, an operational formula involving Meixner–Pollaczek polynomials, and the Schrödinger model for the irreducible unitary representations of the three‐dimensional Heisenberg group. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.528394 |