Meixner–Pollaczek polynomials and the Heisenberg algebra

An alternative proof is given for the connection between a system of continuous Hahn polynomials and identities for symmetric elements in the Heisenberg algebra, which was first observed by Bender, Mead, and Pinsky [Phys. Rev. Lett. 5 6, 2445 (1986); J. Math. Phys. 2 8, 509 (1987)]. The continuous H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 1989-04, Vol.30 (4), p.767-769
1. Verfasser: Koornwinder, Tom H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An alternative proof is given for the connection between a system of continuous Hahn polynomials and identities for symmetric elements in the Heisenberg algebra, which was first observed by Bender, Mead, and Pinsky [Phys. Rev. Lett. 5 6, 2445 (1986); J. Math. Phys. 2 8, 509 (1987)]. The continuous Hahn polynomials turn out to be Meixner–Pollaczek polynomials. Use is made of the connection between Laguerre polynomials and Meixner–Pollaczek polynomials, the Rodrigues formula for Laguerre polynomials, an operational formula involving Meixner–Pollaczek polynomials, and the Schrödinger model for the irreducible unitary representations of the three‐dimensional Heisenberg group.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.528394