Existence of Hartree–Fock solutions

For a finite‐dimensional space with only a mild restriction on the Hamiltonian, it is shown that there exist at least as many Hartree–Fock states as the dimension of the many‐fermion space. The index of the random phase approximation matrix is determined for these HF states and the relationship betw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Math. Phys. (N.Y.); (United States) 1980-08, Vol.21 (8), p.2297-2301
Hauptverfasser: Rosensteel, G., Ihrig, Edwin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a finite‐dimensional space with only a mild restriction on the Hamiltonian, it is shown that there exist at least as many Hartree–Fock states as the dimension of the many‐fermion space. The index of the random phase approximation matrix is determined for these HF states and the relationship between that index and the number of real and complex excitation energies established.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.524670