Reducible KAM tori for higher dimensional wave equations under nonlocal and forced perturbation
In this paper, we prove an infinite dimensional Kolmogorov-Arnold-Moser theorem. As an application, it is shown that there are many small-amplitude linearly-stable quasi-periodic solutions for higher dimensional wave equations with a real Fourier multiplier, which are under nonlocal and forced pertu...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2020-06, Vol.61 (6) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove an infinite dimensional Kolmogorov-Arnold-Moser theorem. As an application, it is shown that there are many small-amplitude linearly-stable quasi-periodic solutions for higher dimensional wave equations with a real Fourier multiplier, which are under nonlocal and forced perturbations with a special structure in space and short range property. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.5139667 |